Usuwanie barwników z wód i ścieków metodą sorpcji na neogeańskich ilach smekytowych
Usuwanie barwników z wód i ścieków metodą sorpcji na neogeńskich ilach smektytowych

ZABRZE 2012
Pracę opiniowali do druku:
Michał Bodzek, Jerzy Gaca

Redakcja WORKS & STUDIES – PRACE I STUDIA
i Archives of Environmental Protection
Instytut Podstaw Inżynierii Środowiska
Polskiej Akademii Nauk
ul. M. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
Tel.: +48-32-271 64 81 Fax: +48-32-271 74 70
e-mail: ipis@ipis.zabrze.pl
Redakcja i korekta: Dorota Konieczna

© Copyright by Institute of Environmental Engineering of the Polish Academy of Sciences,
Zabrze, Poland 2012

PL ISSN 0208-4112

Wojewódzki Fundusz Ochrony Środowiska
i Gospodarki Wodnej w Katowicach

Wydanie dotowane przez Wojewódzki Fundusz Ochrony Środowiska
i Gospodarki Wodnej w Katowicach

Treści zawarte w publikacji nie stanowią oficjalnego stanowiska organów
Wojewódzkiego Funduszu Ochrony Środowiska i Gospodarki Wodnej w Katowicach

Skład, druk i oprawa: Oficyna Drukarska – Jacek Chmielewski
01-142 Warszawa, ul. Sokołowska 12A, tel. +48 22 632 83 52
info@oficyna-drukarska.pl, www.oficyna-drukarska.pl
Spis treści

1. Wprowadzenie ... 11
2. Cel pracy .. 15
3. Charakterystyka ścieków i metody ich oczyszczania 17
 3.1. Definicja i podział ścieków ... 17
 3.2. Ścieki pochodzące z przemysłu włókienniczego i farbiarskiego 18
 3.3. Charakterystyka i klasyfikacja barwników 19
 3.4. Metody usuwania barwników ze ścieków 22
 3.4.1. Metody mechaniczne .. 23
 3.4.2. Metody biologiczne .. 23
 3.4.3. Metody chemiczne i fizykochemiczne 23
4. Usuwanie zanieczyszczeń z wód i ścieków metodami sorpcji 25
 4.1. Podstawy teoretyczne zjawiska sorpcji 25
 4.2. Ekonomiczne i skuteczne sorbenty 28
 4.2.1. Sorbenty organogeniczne 28
 4.2.2. Sorbenty mineralne .. 29
 4.3. Materiał i metodyka badań .. 34
 4.3.1. Sorbenty użyte w badaniach 34
 4.3.2. Barwniki .. 38
 4.3.3. Metoda oznaczania zdolności sorpcyjnych ilów 42
 4.4. Zdolności sorpcyjne ilów w stosunku do wybranych barwników 43
 4.4.1. Sorpca barwników reaktywnych na ilach naturalnych 43
 4.4.2. Sorpca barwników bezpośrednich na ilach naturalnych 46
 4.4.3. Sorpca barwników kwasowych na ilach naturalnych 48
 4.4.4. Sorpca barwników metaloorganicznych na ilach naturalnych 50
 4.5. Podsumowanie ... 52
5. Metodyka mineralów ilastych .. 53
 5.1. Metody modyfikacji mineralów ilastych 53
 5.2. Badania wpływu modyfikacji termicznej i chemicznej ilów na ich
 właściwości fizykochemiczne i pojemność sorpcyjną 55
 5.2.1. Modyfikacja badanych ilów 55
 5.2.2. Właściwości ilów modyfikowanych termicznie i chemicznie 56
 5.2.3. Wpływ modyfikacji ilów na ich zdolności sorpcyjne 63
 5.2.4. Podsumowanie .. 77
6. Metody szacowania parametrów sorpcji 81
 6.1. Wprowadzenie ... 81
 6.2. Oszacowanie stałych w równaniach sorpcji metodą liniową 84
Spis tabel

Tabela 4.1. Skład chemiczny i właściwości fizyczne i fizykochemiczne badanych ilów neogenicznych ... 38
Tabela 5.1. Właściwości fizyczne ilów po modyfikacji temperaturowej i chemicznej .. 58
Tabela 5.2. Właściwości fizykochemiczne ilów naturalnych i modyfikowanych ... 59
Tabela 5.3. Skład chemiczny aktywowanych ilów „Belchatów” i „Adamów” (%) ... 60
Tabela 5.4. Wyniki przeprowadzonego testu statystycznego dla sorpcji barwników reaktywnych – porównanie wartości dwóch próbek parami, poziom ufności 95% ... 68
Tabela 5.5. Współczynnik korelacji liniowej Pearsona między maksymalną pojemnością sorpcyjną ilów a ich wybranymi właściwościami fizykochemicznymi ... 80
Tabela 6.1. Parametry równań izoterm Freundlicha i Langmuira opisujące sorpcję barwników reaktywnych przez ilły naturalne i modyfikowane ... 85
Tabela 6.2. Parametry równań izoterm Freundlicha i Langmuira opisujące sorpcję barwników bezpośrednich przez ilły naturalne i modyfikowane ... 88
Tabela 6.3. Parametry równań izoterm Freundlicha i Langmuira opisujące sorpcję barwników kwasowych przez ilły naturalne i modyfikowane ... 89
Tabela 6.4. Parametry równań izoterm Freundlicha i Langmuira opisujące sorpcję barwników metalokompleksowych przez ilły naturalne i modyfikowane ... 91
Tabela 7.1. Stałe szybkości sorpcji k oraz ilości barwników q usuniętych z roztworu w warunkach równowagi oszacowane na podstawie równań kinetycznych pseudo-pierwszego i pseudo-drugiego rzędu ... 98
Tabela 7.2. Wpływ modyfikacji ilłu na parametry kinetyki sorpcji wyznaczone z równania reakcji pseudo-pierwszo- i pseudo-drugo-rzędowej ... 99
Tabela 8.1. Stopień usunięcia barwników ze ścieków metodą sorpcji na ilach (%) ... 104
Tabela 8.2. Wartości pH w roztworach równowagowych po sorpcji zanieczyszczeń ... 104
Tabela 8.3. Zawartość zanieczyszczeń organicznych wyrażonych jako ChZT w ściekach po sorpcji (mgO₂/dm³) i stopień redukcji ChZT (%) ... 105
Tabela 8.4. Steżenie jonów Cr(VI) w ściekach (próbka 1) po sorpcji oraz ilość zasorbowanych jonów Cr(VI) (mg/kg) ... 106
Tabela 8.5. Stopień usunięcia chromu ze ścieków metodą sorpcji na ilach (próbka 1) ... 106
Spis rysunków

Rys. 4.1. Dyfraktogramy ilów „Belchatów” i „Adamów” naturalnych i nasyconych glikolem etylenowym .. 36
Rys. 4.2. Widma FTIR w podczerwieni próbek ilu „Belchatów” i „Adamów” 37
Rys. 4.3a. Wzory strukturalne badanych barwników reaktywnych 39
Rys. 4.3b. Wzory strukturalne badanych barwników bezpośrednich 39
Rys. 4.3c. Wzory strukturalne badanych barwników kwasowych 41
Rys. 4.3d. Wzory strukturalne badanych barwników metaloorganicznych. 42
Rys. 4.4a. Doświadczalne izotermie sorpcji barwników reaktywnych przez il „Belchatów” i „Adamów” 44
Rys. 4.4b. Stopień retenacji barwników reaktywnych z roztworu przez il „Belchatów” i „Adamów” ... 44
Rys. 4.5. Zmiany wartości pH zawiesin towarzyszące sorpcji barwników reaktywnych na ziarnach ilu „Belchatów” i „Adamów” 45
Rys. 4.6a. Doświadczalne izotermie sorpcji barwników bezpośrednich przez il „Belchatów” i „Adamów” ... 46
Rys. 4.6b. Stopień usunięcia barwników bezpośrednich przez il „Belchatów” i „Adamów” ... 47
Rys. 4.7. Zmiany wartości pH zawiesin towarzyszące sorpcji barwników bezpośrednich na ziarnach ilu „Belchatów” i „Adamów” 47
Rys. 4.8. Widmo w świetle widzialnym roztworu wodnego barwnika DR-81 o stężeniu 1 i 25 mg/dm3 ... 48
Rys. 4.9a. Doświadczalne izotermie sorpcji barwników kwasowych przez il „Belchatów” i „Adamów” 49
Rys. 4.9b. Stopień usunięcia barwników kwasowych z roztworu na ziarnach ilu „Belchatów” i „Adamów” ... 50
Rys. 4.10. Zmiany wartości pH zawiesin towarzyszące sorpcji barwników kwasowych na ziarnach ilu „Belchatów” i „Adamów” 50
Rys. 4.11a. Doświadczalne izotermie sorpcji barwników kwasowych metaloorganicznych przez il „Belchatów” i „Adamów” 51
Rys. 4.11b. Stopień usunięcia barwników metaloorganicznych z roztworu w wyniku ich wiązania na ziarnach ilów „Belchatów” i „Adamów” 51
Rys. 4.12. Zmiany wartości pH zawiesin towarzyszące sorpcji barwników metaloorganicznych na ziarnach ilu „Belchatów” i „Adamów” 51
Rys. 5.1a. Dyfraktogramy ilu „Belchatów” (IB) aktywowanego termicznie i chemicznie ... 56
Rys. 5.1b. Dyfraktogramy ilu „Adamów” (IA) aktywowanego termicznie i chemicznie ... 56
Rys. 5.2a. Widma FTIR dla ilu „Belchatów” (IB) aktywowanego termicznie i chemicznie ... 57
Rys. 5.2b. Widmo FTIR dla ilu „Adamów” (IA) aktywowanego termicznie i chemicznie ... 57
Rys. 5.3. Wpływ modyfikacji ilów na ich porowatość i powierzchnię właściwą ... 62
Rys. 5.4a. Wpływ modyfikacji ilów na ich zdolności sorpcyjne w stosunku do barwników reaktywnych ... 65
Rys. 5.4b. Wpływ modyfikacji ilu „Belchatów” na stopień usuwania barwników reaktywnych z roztworu ... 66
Rys. 5.5a. Wpływ modyfikacji ilów na ich zdolności sorpcyjne w stosunku do barwników bezpośrednich ... 71
Rys. 5.5b. Wpływ modyfikacji ilu „Belchatów” na stopień usuwania barwników bezpośrednich z roztworu ... 72
Rys. 5.6a. Wpływ modyfikacji ilów „Belchatów” i „Adamów” na ich zdolności sorpcyjne w stosunku do barwników kwasowych ... 74
Rys. 5.6b. Wpływ modyfikacji ilu „Belchatów” na stopień usuwania barwników kwasowych z roztworu ... 76
Rys. 5.7a. Wpływ modyfikacji ilów „Belchatów” i „Adamów” na ich zdolności sorpcyjne w stosunku do barwników metaloorganicznych ... 77
Rys. 5.7b. Wpływ modyfikacji ilu „Belchatów” na stopień usuwania barwników metaloorganicznych z roztworu ... 78
Rys. 6.1. Zlinaeryzowane izotermie sorpcji Freundlicza i Langmuira opisujące sorpcję barwnika RB-81 przez il „Belchatów” naturalny i modyfikowany ... 87
Rys. 6.2. Zlinaeryzowane izotermie sorpcji Freundlicza i Langmuira opisujące sorpcję barwnika DR-81 przez il „Belchatów” naturalny i modyfikowany ... 88
Rys. 6.3. Zlinaeryzowane izotermie sorpcji Freundlicza i Langmuira opisujące sorpcję barwnika ABk-1 przez il „Belchatów” naturalny i modyfikowany ... 90
Rys. 6.4. Zlinaeryzowane izotermie sorpcji Freundlicza i Langmuira barwników metalokompleksowych przez il „Belchatów” ... 92
Rys. 7.1. Ilość zasorbowanych barwników RB-19 i DY-142 na ziarnach ilu „Belchatów” w czasie ... 97
Rys. 7.2. Kinetyka sorpcji barwników RB-19 i DY-142 na ziarnach ilu „Belchatów” wg równania kinetycznego pseudo-pierwszego (A) i pseudo-drugiego rzędu (B) ... 99
Rys. 7.3. Wpływ modyfikacji ilu na przebieg reakcji wg równania kinetycznego pseudo-pierwszego (A) i pseudo-drugiego rzędu (B) ... 100
1. Wprowadzenie

Jakość wód podziemnych i powierzchniowych jest przedmiotem prac legislacyjnych UE głównie ze względu na ich rolę, jako źródła wody do picia o dobrej jakości.

Zaostrzenie przepisów dotyczących zanieczyszczeń środowiska wodnego w Dyrektywach Unii Europejskiej, przy jednoczesnej wzrostowej tendencji zapotrzebowania na wodę o wysokich parametrach jakościowych, wymusza tworzenie coraz efektywniejszych i ekologicznie bezpiecznych metod oczyszczania wód oraz ścieków.

Od roku 2000 w Unii Europejskiej obowiązuje Ramowa Dyrektywa Wodna (RDW) [81], której głównym celem jest zapewnienie ochrony wód oraz osiągnięcie do roku 2015 dobrego ich stanu. Realizacja tych zadań wymaga identyfikacji zagrożenia, oceny jego wpływu na środowisko i tam, gdzie jest to konieczne, podjęcia działań remediacyjnych, tak aby w założonym zakresie i terminie osiągnąć dobry stan chemiczny wód. Cele RDW realizowane są między innymi poprzez ograniczenie wprowadzania przez człowieka zanieczyszczeń „źródeł” (bezpośrednio w warsztatach rzemieślniczych i małych przedsiębiorstwach).

Poważnym zagrożeniem dla jakości wód jest odprowadzanie bezpośrednio do zbiorników i ścieków wodnych ścieków przemysłowych i komunalnych. Wiele warsztatów i małych zakładów przemysłowych nie ma własnych oczyszczalni ścieków i odprowadza ścieki bezpośrednio do kanalizacji miejskiej, mimo obowiązującej Ustawy o zbiorowym zaopatrzeniu w wodę i zbiorowym odprowadzaniu ścieków [104].

W województwie śląskim 53,1 hm³ (15%) wytwarzanych ścieków przemysłowych i komunalnych nie jest oczyszczana, przy czym 18% tej ilości jest odprowadzana siecią kanalizacji miejskiej [70]. Wynika to z braku prostych w użyciu i niedrogih metod usuwania zanieczyszczeń „u źródła” (bezpośrednio w warsztatach rzemieślniczych i małych przedsiębiorstwach). W składzie chemicznym tychże ścieków mogą występować metale ciężkie, w tym: cynk, miedź, chrom, nikiel i kadm, a także zanieczyszczenia organiczne, których rodzaj zależy od typu produkcji.

Wśród zanieczyszczeń organicznych środowiska wodnego ważną grupę stanowią barwniki i pigmenty. Są one emitowane do ścieków z różnych gałęzi
przemysłowych, głównie z przemysłu farbiarskiego, włókienniczego, kosmetycznego i papierowego [4, 6, 32, 72]. Obecnie znanych jest ponad 100000 rodzajów barwników dostępnych w sprzedaży. Ich roczna produkcja szacowana jest na ponad 7×10^5 Mg [91]. Około 10–15% ilości użytych w procesie barwienia barwników nie jest wiązana przez włókna materiałów barwionych i może przedostawać się wraz ze ściekami do środowiska wodnego.

Barwniki nawet w niskich stężeniach mogą barwić znaczne obszary wody, zwiększając zagrożenie deficytem tlenuowym, ponieważ zostaje utrudniony proces fotosyntezy prowadzony przez glony i rośliny występujące w środowisku wodnym. Ze względu na złożoną budowę cząsteczkową, barwniki trudno ulegają rozkładowi metodami fizycznymi, chemicznymi i biologicznymi, w wyniku którego mogą powstawać niewielkie ilości produktów toksycznych lub kancerozgennych.

Jedną ze skutecznych metod usuwania barwników z wód i ścieków, zarówno w zakresie niskich, jak i wysokich stężeń, jest ich adsorpcja na porowatych sorbentach syntetycznych (np. węglach aktywnych, żywicach jonowymiennych) [19]. Jednak wysoko koszty wytwarzania i problemy z regeneracją zużytego węgla wymuszają poszukiwanie efektywnych i ekonomicznych sorbentów, zarówno pochodzenia mineralnego, jak i organicznego, charakteryzujących się wysoką skutecznością wiązania barwników ze ścieków [5, 66, 72, 83].

W Polsce wśród surowców skalnych, których zasoby bilansowe oceniono na 58123,89 mln Mg, ważną grupę stanowią kopalinę ilaste [21]. Ich złoża zlokalizowane są na terenie całego kraju, przede wszystkim w utworach czwartorzędowych oraz neogeńskich i paleogeńskich. Największe znaczenie w bilansie zasobów kraju mają bentonity i ilowy bentonitowe, kopalinę kaolinitowe, a także beidellitowe odmiany trzeciorzędowych ilów serii poznańskiej towarzyszące pokładom złóż węglu brunatnych kopalni „Turów”, „Belchatów”, „Konin” i „Adamów” [69]. Surowce te, ze względu na swoje właściwości fizykochemiczne – plastyczność, zdolność do tworzenia czeregu ceramicznego o znacznej wytrzymałości mechanicznej, zdolność pęcznienia, wysoki stopień dyspersji oraz tworzenia zawiesin tiksotropowych – mają zastosowanie głównie w przemyśle ceramicznym, odlewnictwie oraz w pracach inżynieryjnych i hydrotechnicznych oraz jako składnik płuczek wiertniczych [61]. Biorąc pod uwagę ich właściwości fizyczne oraz zdolność do wiązania jonów metali i związków organicznych mogą byćbrane pod uwagę jako sorbenty zanieczyszczeń, w tym barwników.

Bogate piśmiennictwo i liczne badania wskazują, iż minerały ilaste i ily mogą być używane, zamiast stosowanych dotychczas węgli aktywnych, do usuwania barwników zasadowych. Charakteryzują się one wysoką pojemnością sorpcyjną w stosunku do barwników Basic green 4, Basic blue 41, Basic yellow 28, Basic red 46 [4, 6, 30, 33, 35, 44, 45, 51, 76, 98, 101, 102, 107], niezależną od pH roztworu [101].

Zdolność wiązania zanieczyszczeń, w tym barwników, przez surowce ilaste zależy od ich składu mineralnego i właściwości fizykochemicznych, dlatego...
ich zastosowanie w oczyszczaniu ścieków musi być poprzedzone badaniami laboratoryjnymi [37, 45, 76].

Znajomość pojemności sorpcyjnej badanych surowców w stosunku do barwników i mechanizmu ich wiązania ma duże znaczenie w procesach technologicznych oczyszczania ścieków, a także jest konieczna przy optymalizacji procesów sorpcji dla określonych warunków rzeczywistych oraz przy projektowaniu nowych, skutecznych i ekonomicznych sorbentów.
2. Cel pracy

Wyniki badań nad zdolnościami sorpcyjnymi mineralów i skał ilastych w stosunku do barwników, opisywane w literaturze, dotyczą głównie badań pojemności sorpcyjnej lub rzadziej skuteczności usuwania barwnika z roztworu przy użyciu jednego, wybranego sorbentu. Barwnikami najczęściej wybieranymi do badań laboratoryjnych są barwniki zasadowe o charakterze kationowym. Porównywanie danych literaturowych dotyczących maksymalnej pojemności sorpcyjnej różnych materiałów w stosunku do barwników nastręcza wiele problemów, a wręcz jest niemożliwe, gdyż badania te są prowadzone w warunkach (pH, zakres stężenia początkowych, stosunek faza stała: roztwór) znacznie różniących się między sobą.

Brak jest również wyników badań nad możliwością wykorzystania skał ilastych modyfikowanych zarówno metodami termicznymi, jak i chemicznymi, ponieważ są one materiałem trudnym do aktywowania, co wynika z różnej odporności chemicznej mineralów budujących te skały.

Skały ilaste towarzyszące pokładom złóż węgla brunatnych w Polsce są obecnie stosowane przede wszystkim w przemyśle ceramicznym oraz pracach inżynierskich i hydrotechnicznych (warstwy uszczeplające składowiska odpadów, uszczeplenia górotworu w kopalniach węgla kamiennego). Charakteryzują się one silnie rozwiniętą powierzchnią właściwą i dużą pojemnością wymiany kationów, co wskazuje, że mogą być wykorzystywane również jako sorbenty zanieczyszczeń z wód i ścieków. Znaczny udział w składzie mineralnym ilów mineralów ilastych z grupy smektytów wskazuje na możliwość destrukcji ich sieci krystalicznej metodami termicznymi i chemicznymi i zwiększenie zdolności sorpcyjnych.

W związku z tym podjęto się badań nad możliwością zastosowania wybranych ilów towarzyszących pokładom złóż węgla brunatnych KWB „Belchatów” i „Adamów” do oczyszczania wód i ścieków zawierających barwniki.

Celem pracy było określenie pojemności sorpcyjnej dwóch ilów neogeniskich występujących w złożach węgla brunatnego KWB „Belchatów” i „Adamów” – naturalnych oraz aktywowanych termicznie i chemicznie – w stosunku do barwników stosowanych w przemyśle włókienniczym do barwienia tkanin i gotowych wyrobów.
W monografii przedstawiono wyniki badań własnych dotyczące:
- pojemności sorpcyjnej ilów neogeńskich towarzyszących pokładom złóż węglik brunatnych w stosunku do barwników o charakterze katio-nowym i anionowym,
- zdolności wiązania barwników i innych zanieczyszczeń występujących w ściekach rzeczywistych powstających w zakładach włókienniczych,
- wpływu aktywacji termicznej i chemicznej na zdolność wiązania barwników,
- wpływu właściwości fizykochemicznych ilów, w tym porowatości, powierzchni właściwej zewnętrznej i całkowitej oraz pojemności wymiany kationów na ich zdolności sorpcyjne w stosunku do wybranych barwników,
- mechanizmu wiązania barwników przez ily poprzez oszacowanie parametrów w równaniach sorpcji,
- kinetyki procesu sorpcji barwników na ziarnach ilów.
3. Charakterystyka ścieków i metody ich oczyszczania

3.1. Definicja i podział ścieków

Ścieki to mieszanina zużytej wody oraz różnego rodzaju substancji cieklanych, stałych, gazowych oraz cieplanych, usuwanych z terenów miast i zakładów przemysłowych [22]. Przed wprowadzeniem ich bezpośrednio do odbiornika otwartego lub kanalizacji miejskiej muszą spełniać wymogi zawarte odpowiednio w Rozporządzeniu MŚ z dnia 28 stycznia 2009 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi [86] lub Rozporządzeniu MB z dnia 28 lipca 2006 r. w sprawie sposobu realizacji obowiązków dostawców ścieków przemysłowych oraz warunków wprowadzania ścieków do urządzeń kanalizacyjnych [87].

Podstawowym źródłem zanieczyszczeń wód w Polsce są ścieki pochodzące z miast i przemysłu oraz spływy powierzchniowe z terenów rolniczych i nieskanalizowanych.

Ze względu na pochodzenie i skład chemiczny ścieki dzieli się na:
– bytowo-gospodarcze (komunalne) – pochodzące z bezpośredniego otoczenia człowieka, tj. z domów mieszkalnych, budynków gospodarczych, miejsc użyteczności publicznej, zakładów pracy. Powstają one w wyniku zaspokajania potrzeb gospodarczych oraz higieniczno-sanitarnych. Opisywane ścieki zawierają dużą ilość zawiesin oraz związków organicznych (bialka, tłuszcze, cukry) i nieorganicznych. Mogą również zawierać niebezpieczne wirusy i bakterie chorobotwórcze,
– opadowe – powstające w wyniku spływów deszczowych, topnienia śniegu, a także przy myciu i polewaniu ulic miast,
– rolne – powstające w wyniku spływów powierzchniowych z terenów rolniczych (zawierają nawozy mineralne i środki ochrony roślin), a także ścieki z intensywnej hodowli zwierząt,
– przemysłowe – powstające w zakładach produkcyjnych i usługowych podczas różnych procesów technologicznych, np. przy otrzymywaniu, usułachetnianiu i przeróbce surowców. Ilość i rodzaj tych ścieków zale-
ży od rodzaju przedsiębiorstwa, technologii produkcji, ilości zużywanej wody. Największe ilości zanieczyszczeń generuje przemysł: górniczy, metalurgiczny, elektromaszynowy, włókienniczy, chemiczny, paliwo-wo-energetyczny, celulozowy, garbarski i spożywczy [70].

Ścieki przemysłowe zawierają przede wszystkim związku chemiczne, będące ubocznym produktem stosowanych procesów technologicznych, co oznacza, że ich analiza chemiczna wymaga znajomości składu chemicznego używanych surowców, produktów i materiałów pomocniczych, ilości wody zużywanej na jednostkę wytworzonego produktu, bądź wprowadzonego do produkcji surowca oraz znajomości procesów technologicznych stosowanych w danym zakładzie produkcyjnym [22]. Objętość i skład ścieków przemysłowych ulegają dużym zmianom, w zależności od rodzaju przemysłu, wielkości produkcji, zmianowości pracy i sposobu prowadzenia gospodarki wodno-ściekowej w poszczególnych zakładach [34].

Najczęściej występującymi w ściekach przemysłowych związkami organicznymi są: węglowodory aromatyczne, fenole, produkty naftowe, żywice, barwniki, detergenty, pestycydy itp. Natomiast wśród związków nieorganicznych występują zasady, kwasy nieorganiczne, sole metali ciężkich (ołowiu, miedzi, rtęci, cynku, kadmu, chromu), a także siarkowodór, siarczany, chlorki, cyjanki, azotany, fosforany itd. 3.2. Ścieki pochodzące z przemysłu włókienniczego i farbiarskiego

Procesy technologiczne prowadzone w przemyśle włókienniczym dotyczą przerobu włókien naturalnych (pozyskiwanych z roślin lub zwierząt) i chemicznych (wytwarzanych z surowców naturalnych lub syntetycznych).

W trakcie przekształcania surowca włókienniczego wytwarzane są luźne włóknina, przędza, tkaniny lub dzianiny. Równolegle do tego mechanicznego przerobu na kolejnych jego etapach poszczególne postacie surowca/wyrobu tekstylnego mogą podlegać operacjom wykańczalniczym o charakterze chemicznym, obejmujących szereg jednostkowych procesów technologicznych, a w szczególności obróbkę wstępna i bielenie, barwienie, drukowanie, apreturowanie, pranie, suszenie.

Spośród ogólnej ilości wytwarzanych wyrobów włókiennicznych jedynie niewielka część trafia do użytkownika nieodłączona barwnikiem. Pozostała, niepóźniej niższa część tekstyliów podlega barwieniu na jednym z etapów procesu wytwarzania. Po zakończeniu procesu barwienia włókien lub tkanin kąpiel barwiarska (wraz z pewną ilością barwnika niezaadsorbowanego przez włókna) zostaje odprowadzona do ścieków.

Szacuje się, że około 10–15% ilości użytych w procesie barwienia barwników przedostaje się do środowiska naturalnego. W procesie barwienia zużywane są ogromne ilości wody na poziomie 25–250 m³/Mg produktu, co oznacza, że
przy światowej produkcji wyrobów włókienniczych ocenianej na 40 mln Mg na rok wytwarzanych jest, w zależności od rodzaju produkcji, 4–8 mln m³ ścieków zawierających barwniki [107].

Proces barwienia wymaga stosowania również wielu różnych chemicznych środków pomocniczych w zależności od użytej grupy barwników i przyjętej metody. Substancje te przedostają się do ścieków w takiej ilości, w jakiej zostały użyte w procesie barwienia.

W procesach barwienia wyrobów z włókien celulozowych stosuje się:
- NaOH lub Na₂CO₃ w celu podwyższenia pH do 9,5–11,5 oraz NaCl w celu zwiększenia sorpcji barwników o niskim powinowactwie do włókna w barwieniu przy pomocy barwników reaktywnych,
- NaCl, detergenty jako środki zwilżające i dyspergujące, kationowe substancje utrwalające do poprawy odporności wybarwień na czynniki morek przy stosowaniu barwników bezpośrednich.

Natomiast do barwienia wyrobów z włókien wełnianych i wyrobów z włókien syntetycznych (poliamidowych, poliesterowych i poliakrylonitrylowych) stosuje się:
- kwas mrówkowy lub octowy w celu korygowania pH kąpieli barwiar- skiej oraz siarczan(VI) sodowy i amonowy do uzyskiwania równomier- nych wybarwień w przypadku stosowania barwników kwasowych i kwa- sowo-chromowych, metalo-kompleksowych oraz reaktywnych,
- dwuchromian potasu lub sodu jako środek wspomagający barwienie barwnikami kwasowo-chromowymi [65].

Substancje pomocnicze mogą wpływać na właściwości ścieków, a tym samym skuteczność metod ich oczyszczania.

3.3. Charakterystyka i klasyfikacja barwników

Barwniki należą do zanieczyszczeń organicznych występujących w ście- kach generowanych głównie przez przemysł włókienniczy, kosmetyczny i pa- pierniczy. Są to związki barwne, które przy odpowiednim zetknięciu z różnymi substancjami, takimi jak: włókna naturalne i sztuczne, papier, tworzywa sztuczne i inne materiały, wiążą się z nimi w sposób trwały, nadając im odpowiednie zabarwienie. Barwniki, oprócz zdolności trwałego barwienia, muszą być odpornie na działanie światła słonecznego, wody i innych czynników wynikających z użytkowania barwionych wyrobów.

Barwniki używane są przez ludzkość od tysięcy lat. Do XIX wieku wszystkie stosowane barwniki były pochodzenia naturalnego. Ich źródłem były rośliny, owady oraz mięczaki. Pierwszy syntetyczny barwnik (Mauveine) został otrzy- many przez Perkin’a i zastosowany na szeroką skalę w roku 1856 [42].

Obecnie znanych jest ponad 100000 handlowych barwników, a ich roczna produkcja szacowana jest na 7×10⁵ do 1×10⁶ Mg [91].
Barwniki zbudowane są z pochodnych aromatycznych benzenu, naftalenu, antracenu i związków heterocyklicznych, które zawierają w cząsteczce sprzężone układy elektronów \(\pi \), bardzo łatwo ulegające wzbudzeniu, absorbiując promieniowanie o określonej długości fali w widzialnej części widma (380–780 nm) – teoria elektronowa barwy.

W cząsteczkach barwników występują:

grupy chromoforowe:

\[
\begin{align*}
\text{C} &= \text{N} \\
\text{C} &= \text{O} \\
\text{N} &= \text{N} \\
\text{C} &= \text{C} \\
\text{CH} &= \text{CH} \\
\text{N} &= \text{O} \\
\text{N} &= \text{N} \quad \text{O} \\
\end{align*}
\]

- grupa azometynowa
- grupa karbonylowa
- grupa azowa
- grupa dienowa
- grupa etylenowa
- grupa nitrozowa
- grupa azoksowa

A także **grupy auksochromowe:**

\[
\begin{align*}
\text{CH}_3 & \quad \text{NH}_2 & \quad \text{SO}_3\text{H} & \quad \text{OH} & \quad \text{NO}_2 & \quad \text{SO}_2\text{NH}_2 \\
\text{grupa} & \quad \text{grupa} \\
\text{metylowa} & \quad \text{aminowa} & \quad \text{sulfonowa} & \quad \text{hydroksylowa} & \quad \text{nitrowa} & \quad \text{sulfonylowo-} \\
& & & & & \quad \text{-aminowa}
\end{align*}
\]

Grupy chromoforowe są odpowiedzialne za wytworzenie barwy (teoria klasyczna barwy). Natomiast grupy auksochromowe oprócz poprawy trwałości barwy nadają barwnikom specjalne właściwości, takie jak rozpuszczalność w wodzie poprzez powstanie jonów dodatnich lub ujemnych, a także rozpuszczalność w rozpuszczalnikach organicznych i mineralnych [10, 62].

Przy klasyfikacji barwników bierze się pod uwagę różne czynniki, m.in. budowę chemiczną cząsteczki, rozpuszczalność i zastosowanie.

Ze względu na budowę chemiczną cząsteczki barwnik dzieli się na barwniki karbocykliczne i heterocykliczne. Biorąc pod uwagę rodzaj występującego w barwniku chromoforu wśród barwników karbocyklicznych rozróżnia się m.in. barwniki azowe, nitrowe, nitrozowe, a wśród heterocyklicznych – barwniki ksantenowe, oksazynowe, akrydynowe, azynowe, tiazynowe i inne.

Ze względu na rozpuszczalność barwniki dzieli się na:
- barwniki rozpuszczalne w wodzie z wytworzeniem barwnego kationu lub barwnego anionu,
- barwniki nierozpuszczalne w wodzie (zawiesinowe) i barwniki tworzone na włóknie (lodowe, oksydacyjne, zaprawowe),
pigmenty, których sole rozpuszczają się w wodzie (barwniki siarkowe i kadziowe) lub rozpuszczają się w rozpuszczalnikach organicznych (barwniki tłuszczowe).

Z użytkowego punktu widzenia barwniki rozpuszczalne w wodzie dzieli się na:
- barwniki reaktywne,
- bezpośrednie,
- barwniki kwasowe, kwasowo-chromowe i metalokompleksowe,
- barwniki zasadowe.

Barwniki reaktywne (Reactive dyes) są to barwniki anionowe, rozpuszczalne w wodzie, o dobrych i bardzo dobrych trwałościach wybarwień wynikających z obecnością grup aktywnych (np. chlorotrianyzowych, fluorowcopirymidinowych, epoksydowych, winylowych), które mogą reagować z hydroksylowymi grupami włókien celulozowych lub aminowymi grupami wełny, jedwabiu albo włókien poliamidowych.

Barwniki bezpośrednie (Direct dyes) należą głównie do barwników poliazowych. Służą do barwienia włókien celulozowych (bawełny, wiskozy, lnu, konopi itp.) oraz włókien poliamidowych zarówno w postaci włókien luźnych, przędy, jak i dzianin oraz tkanin, a także do barwienia skóry i papieru. Charakteryzują się podwyższoną odpornością na światło.

Barwniki kwasowe (Acid dyes) występują w postaci soli sodowych kwasów sulfonowych lub karboksylowych. Należą do barwników antrachinonowych, azowych, trifenylomatanowych. Zawierają barwny anion, który podczas procesu barwienia wiązany jest przez zasadowe grupy włókien białkowych (głównie wełny) lub poliamidowych. Przeznaczone są do barwienia wełny i skóry, a także stosowane są w tzw. chemii gospodarczej do zabarwiania szamponów i płynów do kąpieli, płynów do mycia naczyń, kostek toaletowych oraz są wykorzystywane do barwienia drewna i papieru.

- W grupie barwników kwasowych wyróżnia się **barwniki metalokompleksowe**, których cząsteczki zawierają atomy metalu (najczęściej chromu i kobaltu) związane w postaci związków kompleksowych. Są one stosowane do barwienia wełny, włókien poliamidowych, jedwabiu naturalnego oraz skóry.

- **Barwniki zasadowe zwane również kationowymi** (Basic dyes) mają charakter słabo zasadowy. W wodzie dysocjują z odszczepieniem barwnego katio- nu związanego w nieodwodnionej cząsteczce z anionem kwasu solnego, siarkowego(VI) lub szczawiowego. Pod względem budowy chemicznej należą do barwników ksantenowych, azowych, azynowych. Stosowane są do barwienia wełny, jedwabiu naturalnego i włókien poliakrylonitrylowych oraz do barwienia skóry, drewna i papieru, w tym papieru makulaturowego. Stwierdzono, że zdolność barwienia wzrasta wraz ze wzrostem we włóknach zawartości substancji ligninowych.

W procesach barwienia włókien, tkanin i wyrobów w celu otrzymania szerokiej palety barw barwniki mogą być mieszane ze sobą w różnych konfi-
guracjach, a do ścieków przechodzą w ilościach, które zależą od efektywności wiązania poszczególnych barwników przez włókna tkanin.

3.4. Metody usuwania barwników ze ścieków

Większość, a w praktyce niemal wszystkie, wody naturalne przed ich przetworzeniem do picia oraz na potrzeby gospodarcze i przemysłowe muszą być oczyszczone lub uzdatnione. Rodzaj stosowanych procesów jednostkowych, a następnie układu oczyszczania zależy od rodzaju substancji, które muszą być usunięte z wody [53].

Jednym z najgroźniejszych źródeł zanieczyszczenia naturalnego środowiska wodnego są ścieki przemysłowe, w tym ścieki z przemysłu włókienniczego i kosmetycznego zawierające barwniki. Szybki rozwój produkcji przemysłowej, często bardzo wdomie, przyczynił się bezpośrednio do zanieczyszczenia, a w wielu wypadkach nawet do skażenia wód powierzchniowych [62].

Nawet niewielkie stężenia barwników w wodach naturalnych mogą barwić znaczne obszary wody i w ograniczać przepuszczalność światła [111]. Zjawisko to zwiększa zagrożenie deficytem tlenowym, gdyż zostaje utrudniony proces fotosyntezy prowadzony przez glony i rośliny żyjące w środowisku wodnym. Barwniki mogą mieć również bardzo niekorzystny wpływ na zdrowie człowieka, gdyż mogą powodować podrażnienie oczu, uczulenie i podrażnienie skóry [42]. Niektóre z nich są toksyczne i mogą mieć działanie kancerogenne [11, 13, 44].

Ze względu na ujemny wpływ barwników na środowisko wodne od lat 80-tych barwniki uznané zostały za zanieczyszczenia niebezpieczne dla środowiska. Trudności w wypracowaniu metody usuwania barwników, która byłaby jednocześnie ekonomiczna, skuteczna i prosta powodowane są szybkimi zmianami w technologii produkcji i stosowaniem w procesie technologicznym różnych barwników [42].

Ścieki technologiczne pochodzące z przemysłu włókienniczego i farbiarskiego, niezależnie od stosowanej metody barwienia oraz rodzaju barwników, są obciążone wysokim ładunkiem koloidów i zawiesin organiczno-mineralnych lub mineralnych oraz ogólnej zawartością zanieczyszczeń organicznych wyrażonych w postaci chemicznego zapotrzebowania na tlen (ChZT), w tym substancji powierzchniowo-czynnych, a także jonami metali ciężkich [114].

Postęp techniczny w przemyśle włókienniczym ukierunkowany jest między innymi na zmniejszenie zawartości toksycznych zanieczyszczeń w odprowadzanych ściekach oraz zwiększeniu skuteczności oczyszczania ścieków.

Procesy stosowane do oczyszczania ścieków podzielić można na mechaniczne, fizyczne, chemiczne i biologiczne. Procesy te mogą być łączone ze sobą w układy fizyczno-chemiczne, fizyczno-biologiczne itp.
3.4.1. Metody mechaniczne

3.4.2. Metody biologiczne

Są to procesy i metody, w których do rozkładu substancji wykorzystuje się drobnoustroje [31]. Procesy biologiczne wykorzystywane są do oczyszczania ścieków w celu uzyskania obniżenia ładunku substancji organicznych. Charakteryzują się one stosunkowo niskimi kosztami oraz nietoksycznością produktów końcowych [42]. W wielu przypadkach mikroorganizmy nie mogą metabolizować wszystkich zanieczyszczeń obecnych w ściekach ze względu na ich trwałą budowę lub z powodu toksycznego działania tych związków [48].

3.4.3. Metody chemiczne i fizykochemiczne

Wśród metod fizykochemicznych i chemicznych do oczyszczania ścieków przemysłowych zawierających chemiczne związki organiczne, w tym barwniki, stosowane są:

– koagulacja – proces łączenia cząstek fazy rozproszonej w zespoły cząstki (aglomeraty, agregaty) pod wpływem dodatku elektrolitów obniżających potencjał elektrokinetyczny, zobojętnienia cząstek posiadających powierzchniowy ładunek elektryczny, wytworzenia wodorotlenków kationów wielowartościowych, na których adsorbowane są jony i cząstki koloidów, wzajemnego przyciągania się i aglomeracji cząstek o różnokształtnym ładunku powierzchniowym [9]. Powstałą fazę stałą usunąć można w wyniku sedymentacji lub flotacji i filtracji,

– utlenianie chemiczne kąpieli pobarwiarstkich, najczęściej za pomocą nadtlenku wodoru lub ozonu w środowisku kwaśnym przy pH < 4,0 i udziale soli żelaza(II) jako katalizatora w podwyższonej temperaturze (100–130°C). Zastosowanie podwyższonej temperatury oraz nadtlenku wodoru zwiększa znacznie koszt tej metody. Utlenianie chemiczne może być stosowane zarówno przed, jak i po procesach oczyszczania biologicznego, przy czym zastosowanie utleniania przed oczyszczaniem biologicznym polepsza cechy biodegradacyjne składników ścieków, ale
prowadzenia, że konwencjonalne metody usuwania zanieczyszczeń wód i ścieków (koagulacja, utlenianie, procesy membranowe) stały się niewystarczające lub zbyt kosztowne. Dlatego w ostatnich latach coraz więcej uwagi poświęca się procesom usuwania zanieczyszczeń metodami sorpcji z wykorzystaniem skutecznych i ekonomicznych sorbentów takich jak np. kopaliny oraz surowce naturalne i odpadowe.
4. Usuwanie zanieczyszczeń z wód i ścieków metodami sorpcji

4.1. Podstawy teoretyczne zjawiska sorpcji

Po raz pierwszy badania naukowe nad adsorpcją gazów na węglu drzewnym przeprowadził w 1773 roku szwedzki chemik Carl Wilhelm Scheele. Termin adsorpcji wprowadził jednak znacznie później, bo dopiero w 1881 roku przez Kayser’a, który stwierdził, iż podstawowym elementem w procesie adsorpcji jest powierzchnia fazy stałej [42]. Obecnie proces adsorpcji jest powszechnie znany i szeroko wykorzystywany w celu usuwania różnego rodzaju zanieczyszczeń z wód, w tym jonów metali ciężkich oraz barwników [1, 2, 28, 89, 90, 112].

Ze względu na siły oddziaływujące w procesie adsorpcji, adsorpcję dzieli się na fizyczną – gdy występują siły międzycząsteczkowe, np. van der Waalsa i chemiczną – gdy adsorpcja związana jest z udziałem elektronów pochodzących od adsorbatu i adsorbentu. Adsorpcja chemiczna charakteryzuje się wydzieleniem ciepła adsorpcji o dużych wartościach, trudną desorpcją i jednocząsteczko-wą warstwą adsorpcyjną [71, 88].

Oddziaływania międzymiędzycząsteczkowe w adsorpcji fizycznej dzieli się na niespecyficzne i specyficzne. Oddziaływania niespecyficzne związane są efektem dyspersyjnym (efektem Londona), polegającym na tworzeniu się przejściowych dipoli powstających w wyniku ruchu elektronów i powodujących zmianę gęstości elektronowej w obrębie każdego atomu budzącego cząsteczkę. Nato-miast oddziaływania specyficzne związane są z rozmieszczeniem lokalnym gęstości elektronowej na krańcach cząsteczek.

Wyróżnia się:
– efekt orientacji cząsteczek-dipoli, zwany efektem Keesona, charakterystyczny dla cząsteczek polarnych,
– efekt inducyjny, zwany efektem Debye’a, polegający na tym, iż cząsteczki niepolarne, dostają się w pole siłowe adsorbentu lub innych cząstek polarnych, mogą zyskać polarność indukowaną,
– efekt Coulomba wynikający z oddziaływań elektrostatycznych jonów.
Do procesów adsorpcyjnych zalicza się również:
– adsorpcję jonowymienną – często określana jako wymiana jonowa. W procesie tym jony obecne w roztworze wiązane są na powierzchniach zewnętrznych i wewnętrznych adsorbentu w wyniku wymiany między nimi a słabo związanymi jonami adsorbentu, stanowiącymi centra sorpcyjne. Wymiana ta zachodzi w ilościach równoważnych, a różnice między sorpcją a wymianą jonową polegają na tym, iż w równaniu wynikającym z prawa działania mas przy sorpcji operujemy tylko stężeniami jednego składnika, podczas gdy dla sorpcji wymiennej równania pozwalają na obliczenie parametrów sorpcji dla wszystkich jonów konkurujących o zajęcie miejsc aktywnych fazy stałej,
– adsorpcję mechaniczną – polegającą na zatrzymywaniu w przestrzeniach między cząstkami fazy stałej zawiesin i mikroorganizmów, zawartych w roztworze zanieczyszczeń. Zależy ona od wielkości porów i ich rozkładu,
– adsorpcję biologiczną – polegającą na unieruchomieniu jonów metali przez organizmy żywe i rośliny. Jony metali mogą wniknąć do organizmów w wyniku wielu mechanizmów, a jednym z nich jest transport w formie kompleksowej z substancjami organicznymi.

Ponadto procesom sorpcji mogą towarzyszyć wytrącanie, współwytrącanie, a w przypadku jonów metali utlenienie i redukcja, które również mogą powodować zmniejszenie stężenia zanieczyszczeń w roztworze.

Rozróżnienie czystej adsorpcji fizycznej i chemicznej nie nastręcza zażuwczaj większych trudności. Najważniejszymi kryteriami, na których można oprzeć porównanie obu rodzajów adsorpcji są:
– ciepło adsorpcji – niewielkie w przypadku adsorpcji fizycznej, duże (tego samego rzędu co ciepło odpowiedniej reakcji chemicznej) w przypadku chemisorpcji,
– odwracalność procesu – substancję zaadsorbowaną można, w przypadku adsorpcji fizycznej, dość łatwo usunąć z powierzchni adsorbentu, natomiast usunięcie chemisorbowanej warstwy jest bardzo trudne,
– grubość warstw adsorpcyjnych – w przypadku adsorpcji fizycznej w odpowiednich warunkach powstaje warstwa adsorpcyjna o grubości odpowiadającej kilku średnicom cząstek adsorbatu, w toku chemisorpcji powstają warstwy jednostajnosięczkowe [9].

Jednak bardzo często wiązanie zanieczyszczeń odbywa się w wyniku kilku równoległych procesów (np. adsorpcja fizyczna i wymiana jonowa, adsorpcja fizyczna i wytrącanie lub współwytrącanie). W takim przypadku używa się pojęcia bardziej ogólnego, tj. sorpcja.

Do opisu zjawiska adsorpcji w stałej temperaturze wykorzystuje się izotermy adsorpcji podające związek między stężeniem równowagowym adsorbat w roztworze, a ilością adsorbatu związanego na powierzchni adsorbentu. Giles i współpracownicy podzielili izotermy adsorpcji z roztworów na
cztery typy: S, L, H i C. Dla typu S nachylenie krzywej przy niskich stężeniach adsorbatu jest niższe niż przy wyższych. Ten typ izoterm wskazuje, iż przy niskich stężeniach adsorbatu powierzchnia ma niskie powinowactwo do adsorbatu, które wzrasta wraz ze wzrostem stężenia w roztworze. Do tego typu izoterm należą izoterm, w których rozpuszczalnik jest silnie adsorbowany. Dla typu L (Langmuir) charakterystyczne jest malejące nachylenie izoterm wraz z wzrostem stężenia adsorbatu. Wskazuje to, iż przy niskich stężeniach powierzchnia ma niskie powinowactwo do adsorbatu, które wzrasta wraz ze wzrostem stężenia w roztworze. Do tego typu izoterm należą izoterm, w których rozpuszczalnik jest silnie adsorbowany. Do typu H należą izoterm dla układów z silnym oddziaływaniem adsorbatu z adsorbentem. Typ C jest charakterystyczny dla izoterm o przebiegu liniowym, świadczącym o proporcjonalnym podziale substancji między fazę stałą a roztworem bez wiązań specyficznych, między adsorbentem i adsorbatem [92].

Badania laboratoryjne wiązania zanieczyszczeń z roztworów wodnych na różnego rodzaju sorbentach mogą być prowadzone w statycznych lub dynamicznych warunkach kontaktu faza stała: roztwór. Badania dynamiczne przeprowadza się najczęściej w kolumnie zawierającej adsorbent, przez którą przepuszcza się roztwór zawierający zanieczyszczenia, które chcemy usunąć.

Przebieg sorpcji można przedstawić za pomocą krzywej sorpcji lub krzywej przebicia, wyrażającej stosunek C/C_0 (C – stężenie w wycieku, C_0 – stężenie w roztworze wprowadzonym do kolumny) jako funkcję czasu lub objętości wycieku. Adsorpcja zachodzi w największym stopniu w początkowej, wejściowej strefie warstwy. Jeśli strefa ta jest już nasycona to front adsorpcji przesuwa się do głębszych warstw i stężenie adsorbatu w roztworze wyjściowym wzrasta do poziomu określonego punktem przebicia. Od tego punktu stężenie w roztworze wyjściowym szybko wzrasta do osiągnięcia wartości wejściowej. Stężenie nasycenia zależy od rodzaju adsorbentów i temperatury, natomiast czas adsorpcji do punktu przebicia zależy od stężenia początkowego i objętości strumienia adsorbentu oraz wysokości warstwy [55]. Czas przebicia maleje wraz ze zmniejszeniem wysokości warstwy, wzrostem rozmiaru ziaren adsorbentu, objętości strumienia adsorbentu oraz stężenia adsorbowanego składnika.

Natomiast metoda statyczna „batch” jest najprostszą i najszybszą metodą oceny właściwości sorpcyjnych badanego materiału. Reakcje oddziaływania sorbent – sorbat polegają na wytrząsaniu próbki fazy stałej z roztworem o określonym stężeniu zanieczyszczenia do osiągnięcia stanu quasi-równowagowego i przebiegają bez możliwości wymiany masy z otoczeniem. Doświadczenie prowadzone dla różnych stężeń początkowych zanieczyszczenia w roztwarach pozwala na wyznaczenie izoterm sorpcji.
4.2. Ekonomiczne i skuteczne sorbenty

Najbardziej popularnym i szeroko stosowanym sorbentem jest węgiel aktywny, którego wykorzystanie znane jest od czasów starożytnych. Adsorpcja na węglu (głównie do celów leczniczych) opisana została już w 1550 roku p.n.e. na egipskich papirosach, później przez Hipokratesa i Pliniumsza [42]. Węgiel aktywny dzięki swym doskonałym właściwościami sorpcyjnym – porowatej budowie – jest skutecznym sorbentem. Jednak jego stosowanie wiąże się z wysokimi nakładami finansowymi oraz ograniczonym ponownym zastosowaniem [5, 7, 75]. Z tego też powodu wzrosło zainteresowanie nowymi, ekonomicznymi sorbentami, tj. materiałami naturalnymi, które są niedrogie, a jednocześnie występują powszechnie w dużych ilościach lub są surowcami odpadowymi, ewentualnie produktami ubocznymi w produkcji przemysłowej lub rolniczej, które wymagają jedynie niewielkiego i prostego przygotowania wstępnego [4, 12, 16, 50, 57, 59].

Sorbenty te można podzielić – uwzględniając ich pochodzenie – na naturalne kopaliny i surowce oraz surowce odpadowe i produkty uboczne, a ze względu na skład chemiczny – na sorbenty mineralne i organogeniczne.

Polska należy do krajów, gdzie prowadzona nieraz od wieków eksploatacja kopalini i ich wykorzystanie gospodarcze spowodowały wytworzenie różnego rodzaju odpadów. Wśród nich znaczący udział mają mineralne surowce odpadowe, tzn. odpady stałe powstające w procesach wydobycia, wzbogacania i przetwarzania kopalini [84]. Mogą być onebrane pod uwagę jako sorbenty w procesach oczyszczania wód szczególnie w kontekście coraz większych trudności w pozyskiwaniu surowców ze źródeł naturalnych.

4.2.1. Sorbenty organogeniczne

Do ekonomicznych i skutecznych sorbentów pochodzenia organicznego zalicza się:
– biolity: torfy; węgiel brunatny i ksylity,
– materiały bogate w taniny, w tym korę i trociny – produkty uboczne w przemyśle drzewnym, a także lupiny orzechów ziemnych, włoskich i kokosowych, fusy z herbaty i kawy,
– materiały bogate w ligniny,
– chitynę i jej pochodne – chitosan,
– biomasę – wodorosty, algi i alginiany,
– ksantaty,
– komposty i in.
Ich zdolności sorpcyjne wynikają przede wszystkim z obecności:
– kwasów humusowych zawierających grupy donorowe (zdysocjowane grupy karboksylowe -COOH i hydroksylowe fenoli -OH) odpowiedzial-
ne za wiązanie kationów (metali ciężkich, barwników) – biolity i komposty,
– grup o charakterze zasadowym (-NH₂ =NH) decydujących o wiązaniu anionów i powstawaniu wiązań wodorowych – chitosan,
– grup polihydroksylowych fenoli uczestniczących w wiązaniu chelatowym między kationem metalu a grupami -OH – materiały zawierające taninę,
– polisacharydów obecnych w wodorostach i algach [105].

Natomiast wysoka porowatość sorbentów pochodzenia organicznego po-woduje, że zanieczyszczenia mogą być wiązane w wyniku retencji.

4.2.2. Sorbenty mineralne

Wśród naturalnych składników skorupy ziemskiej szczególnymi właściwościami sorpcyjnymi odznaczają się minerały ilaste, zeolity, niektóre minerały z grupy SiO₂ i substancje żelaziste.

Sorbenty mineralne odznaczają się zdolnością adsorpcji cząstek elektrycznie obojętnych związków polarnych i niepolarnych oraz jonów. Mechanizm sorpcji jest zależny od charakteru chemicznego, w tym chemizmu powierzchni oraz powierzchni właściwej sorbentu i porowatości.

Wśród sorbentów mineralnych największą powierzchnią właściwą charakteryzują się minerały ilaste grupy smektytu i zeolity (do około 800 m²/g). Jest ona sumą zewnętrznej powierzchni krystalitów, powierzchni wewnętrznej kanałów wewnętrzstrukturalnych (w zeolitach) oraz powierzchni wewnętrznych przestrzeni międzypakietowych (w smekytach i innych minerałach ilastych typu 2:1). W przypadku sorbentów krzemionkowych i minerałów typu kaolinitu, pirofyllitu, talku i illitu powierzchnia ta waha się na ogół w granicach od kilku do kilkudziesięciu m²/g i stanowi niemal wyłącznie zewnętrzną powierzchnię krystalitów [52].

Porowatość sorbentów mineralnych zależy od wielkości i dostępności kanałów wewnętrzstrukturalnych (w zeolitach) oraz przestrzeni międzypakietowych (minerały smekytowe), a także wielkości przestrzeni międzyziarnowych i budowy ziaren.

Sorbenty mineralne wyróżniają się drobnym uziarnieniem. Minerały o rozdrobnieniu kolloidalnym mają na powierzchni ładunek elektryczny, którego znak i wielkość zależą od stężenia jonów potencjałotwórczych (H⁺ i OH⁻) w roztworze, tzn. od pH roztworu, zgodnie z reakcją AOH↔AO⁻+H⁺ lub AOH+H⁺↔AOH₂⁺. Punkt izoelektryczny, tj. wartość pH roztworu, przy którym powierzchnia ziaren minerału jest obojętna, poniżej tej wartości dodatnia, a powyżej – ujemna, zależy od rodzaju minerału i wynosi dla montmorillonitu – 2,5, kaolinitu – 4,6, kwarcu – 2,0, αAl₃O₆ – 9,1, αAl(OH)₃ – 5,0, γAlOOH – 8,2, goethytu αFeOOH – 7,3, Fe(OH)₃ – 8,5, hematytu αFe₃O₄ – 6,7, kalcytu
CaCO₃ – 9,5 [23, 43, 97]. Oznacza to, że spośród powszechnie występujących w środowisku naturalnym mineralów i skał tlenki i tlenowodorotlenki żelaza (hematyt Fe₂O₃, ferrihydryt 5Fe₂O₃.9H₂O, goethyt α-FeOOH) wykazują zdolności wiązania zarówno kationów, jak i anionów z wód i ścieków [82]. Ponieważ amortyczne tlenki żelaza występują w środowisku zarówno w stanie wolnym, jak i związane z powierzchnią różnych mineralów, mogą zmieniać ich właściwości powierzchniowe.

Inną charakterystyczną cechą sorbentów mineralnych jest zdolność do wymiany kationów, która jest uwarunkowana obecnością nadmiaru łańcuchu ujemnego sieci krystalicznej. W zeolitach i minerałach ilastych główną przyczyną jego powstawania są heterowalentne podstawienia izomorficzne. Właściwości jonowymienne krzemianów warstwowych są w znacznym stopniu zależne od wielkości i lokalizacji ładunku ujemnego [52]. Ujemny ładunek pakietu smektytów przypadający na komórkę elementarną zmienia się w zakresie od 0,4 do 1,2, natomiast w wermikulitach – od 1,2 do 1,8 [18].

Ze względu na swoje właściwości fizyczne (wysoką porowatość, dobrą nasiąkliwość i przepuszczalność) również diatomity i ziemia okrzemkowa mogą znaleźć zastosowanie zarówno przy usuwaniu jonów metali ciężkich i zanieczyszczeń organicznych z wód i ścieków, jak również jako materiał filtracyjny [50]. Głównymi grupami funkcjonalnymi są grupy silanolowe, które mogą reagować z wieloma polarnymi związkami organicznymi, w tym barwnikami [3].

Minerały i skały ilaste

Najlepiej znanymi i powszechnie używanymi sorbentami mineralnymi są sorbenty ilaste zawierające minerały ilaste grupy kaolinitu (kaolinit, nakryt, dykit, haloiży), smektytu (montmorillonit, beidellit) oraz mik (illit) należące do krzemianów warstwowych oraz sepiolit i pałygorskit należące do krzemianów warstwowo-wstęgowych [52, 94, 113].

Minerały ilaste używane były już od pierwotnych czasów w ceramicznych, garnkarskich czy rzeźbiarskich. Obecnie znamy szerokiezza zastosowanie i zainteresowanie nimi ciągle wzrasta. Powodem tego jest duża ich różnorodność oraz łatwość ich modyfikacji, co daje wreszcie nieograniczone możliwości aplikacyjne. Posiadają ponadto specyficzne właściwości, takie jak wysoką powierzchnię właściwą (do 800 m²/g), zdolność wymiany kationów (CEC – cation exchange capacity) oraz zdolność pochłaniania wody, substancji organicznych i roztworów surfaktantów (substancji powierzchniowo czynnych). Właściwości te zależą od składu i rozmiaru ziarn [78].

Minerały ilaste pod względem składu chemicznego są uwodnionymi glino-krzemianami glinu, magnesu lub żelaza. Charakteryzują się budową pakietową, a każdy pakiet zbudowany jest z jednej lub dwóch warstw krzemotlenowych o strukturze tetraedrycznej i jednej metalo-tleno-wodorotlenowej o strukturze oktaedrycznej. W zależności od stosunku ilościowego warstw tetraedrycznych do
oktaedrycznych w pakiecie wyróżnia się minerały typu 1:1, gdzie warstwa oktaedryczna jest trwale i jednostronnie połączona z warstwą tetraedryczną lub 2:1, gdzie warstwa oktaedryczna leży między dwoma warstwami tetraedrycznymi [94].

Spośród minerałów ilastych największą powierzchnię właściwą i najwyższą pojemność wymiany kationów, a więc najlepsze zdolności sorpcyjne posiadają minerały o pakietach 2:1 grupy smektytu. Natomiast minerały o pakietach 1:1 typu kaolinitu wiążą kationy w mniejszych ilościach, a sorpção odbywa się jedynie na powierzchni krystalitów. Jednak w ostatnich latach wzrasta zainteresowanie nimi ze względu na możliwość zastosowania ich do usuwania barwników ze ścieków oraz metali ciężkich przede wszystkim w zakresie niskich stężeń, o czym świadczy bogate piśmiennictwo w tym zakresie [np. 20, 33, 46, 103].

Smektyty (m.in. montmorillonit, beidellit, nontronit) należą do krzemianów warstwowych o budowie pakietowej, tworzących krystality o średnicy od kilku dziesiątych mikrometrów do kilku mikrometrów. Zbudowane są z trójwarstwowego pakietu typu 2:1, w którym pomiędzy dwoma krzemotlenowymi warstwami tetraedrycznymi występuje oktaedryczna warstwa metalo-tlenowo-wodorotlenowa. W zależności od budowy warstwy oktaedrycznej wyróżnia się smektyty di- i trioktaedryczne. W smektytach dioktaedrycznych na możliwe do obsadzenia trzy pozycje obsadzone są tylko dwie, natomiast w smektytach trioktaedrycznych – wszystkie pozycje są obsadzone.

Pakiet posiada ładunek wynikający z heterowalentnej diadochii w warstwie oktaedrycznej lub warstwie tetraedrycznej lub w obu warstwach. W smektach dioktaedrycznych jonami, które najczęściej podstawiają jony Al$^{3+}$ w warstwie oktaedrycznej są jony Fe$^{2+}$, Mg$^{2+}$, Ni$^{2+}$, Zn$^{2+}$, natomiast wśród jónów podstawiających jony Si$^{4+}$ w warstwie tetraedrycznej są jony Al$^{3+}$, Fe$^{3+}$. Ładunek pakietu jest zbojętniany najczęściej hydratyzowanymi kationami K$^+$, Na$^+$, Ca$^{2+}$ i Mg$^{2+}$ obsadzającymi pozycje międzypakietowe, które mają zdolność do wymiany [18].

Innym źródłem ładunków są ładunki powierzchniowe występujące na krawędziach ziarn minerałów w wyniku zerwania wiązań Si-O-Si i Al-O-Al i przekształcenia ich w grupy silanolowe -Si-OH i aluminolowe -Al-OH. Potencjał powierzchniowy na krawędziach ziarn zależy od pH otaczającego je roztworu.

Niewysycone ładunki ujemne mogą występować także w miejscach niektórych defektów sieciowych, np. dyslokacji [52].

Do smektów dioktaedrycznych należą montmorillonit i beidellit. W montmorillonitcie ładunek pakietu pochodzi głównie z warstwy oktaedrycznej, w której część jonów Al$^{3+}$ jest zastępowana jonami Mg$^{2+}$ – (M^+,Al)Mg$_y$[Si$_8$O$_{20}$](OH)$_4$nH$_2$O. Natomiast w beidellite źródłem ładunku pakietu jest warstwa tetraedryczna, w której część jonów Si$^{4+}$ jest zastępowana przez jony Al$^{3+}$ (M^+,Al)$_x$(Si$_{8-x}$Al$^+$)$_x$O$_{20}$](OH)$_8$nH$_2$O. Lokalizacja ładunku ujemnego w warstwie tetraedrycznej powoduje wzrost siły oddziaływania z kationami międzypakieto-
wymi. Dlatego w montmorillonicie kationy międzypakietowe są łatwiej wymienialne niż w beidellicie [94].

Do smektytów trioktaedrycznych należy hecoryt, który jest trioktaedrycznym odpowiednikiem montmorillonitu (\(\text{M}^+ \text{Mg}_x \text{Li}_y [\text{Si}_8 \text{O}_{20}] (\text{OH})_4 \text{nH}_2\text{O}\)) i saponit, który jest odpowiednikiem beidellitu (\(\text{M}^+ \text{Mg}_x (\text{Si}_{8-x} \text{Al}_x \text{O}_{20}) (\text{OH})_8 \text{nH}_2\text{O}\)).

Minerały smektytowe zawierają wodę w różnych formach. Występuje ona w przestrzeniach międzymakietowych, zaadsorbowana na zewnętrznych i wewnętrznych powierzchniach pakietu oraz jako woda wolna w mikroporach w wyniku kondensacji kapilarnej [18]. Ważnym czynnikiem mającym wpływ na hydratację smektytów jest usytuowanie izomorficznych podstawień w pakietach (tj. czy ładunek pakietu pochodzi z warstwy tetra- czy oktaedrycznej). W pakiecie obojętnym elektrycznie atomy tlenu zachowują się jak centra Lewisia sądonorami elektronów i tworzą słabe wiązania wodorowe z cząsteczkami wody. Występowanie podstawień izomorficznych powoduje, że atomy tlenu posiadają nadmiarowy ładunek i wzrastają ich właściwości donorowe. Według Sposito [93] wiązania wodorowe między cząsteczkami wody a atomami tlenu są silniejsze, gdy podstawienia izomorficzne występują w warstwie tetraedrycznej niż oktaedrycznej.

Minerały tej grupy charakteryzują się silnie rozwiniętą powierzchnią właściwą rzędu 800 m\(^2\)/g. Na powierzchni tej występują kwasowe centra aktywne, m.in. typu Lewisa i Brønesteda. Protonodonorowe centra kwasowe typu Brønesteda to H\(^+\), słabo związane ze strukturą i łatwo wymieniane przez inne kationy, tworzące na krawędziach warstwy tetraedrycznej grupy silanolowe -Si-OH oraz cząsteczki wody hydratyzującej kationy międzymakietowe, której stopień dysocjacji jest znacznie wyższy niż wody w stanie ciekłym. Elektronoaakceptowe centra Lewisa związane są z niewysyconymi koordynacyjnie jonami Al\(^{3+}\) występującymi na krawędziach warstw oktaedrycznych. Dysocjacyjna adsorpcja cząsteczek wody na tych centrach przekształca je w centra typu Brønesteda. Nadmierowe ładunki ujemne zlokalizowane przy grupach hydroksylowych lub atomach tlenu na krawędziach warstw oktaedrycznych mogą również być kompensowane przez protony i inne kationy wmyślane [109].

Ładunek pakietu smektytu (0,4–1,2; średnio 0,64) przypadający na komórkę elementarną jest stosunkowo niewielki, co powoduje, że kationy są związane słabo w przestrzeniach międzymakietowych i mogą być wymieniane na inne kationy. Cecha ta jest niezmiernie ważna, ponieważ pozwala na różne modyfikacje strukturalne [18, 109].

Punkt izoelektryczny dla montmorillonitu wynosi pH 2,5, co oznacza, że przy pH > 2,5 powierzchnia ziaren jest ujemna i umożliwia wiązanie z roztworów kationów. Zmiana ładunku powierzchni z ujemnego na dodatni i wiązanie anionów jest możliwa jedynie przy silnym zakwaszeniu wód.

Ze względu na swoje właściwości i wysoką pojemność sorpcyjną mogą z powodzeniem być stosowane jako sorbenty do usuwania zanieczyszczeń nie-organicznych i organicznych [42, 106, 110, 113]. Ponadto zasobność złóż skał
ilastych oraz względnie niska cena stwarzają realną możliwość ich wykorzystańia w procesach technologicznych oczyszczania wody i ścieków.

Minerały ilaste grupy kaolinitu, illitu i smektytów są głównymi składnikami skał ilastych (ilów, ilowców, łupków ilastych, glin) oraz gleb. Mogą one zawierać także materiał detrytyczny, a przede wszystkim kwarc.

Możliwość wykorzystania kopalin ilastych – bezpośrednio jako surowca lub jako materiału do uzyskania surowca – zależy głównie od stosunku ilościowego zawartości poszczególnych grup minerałów ilastych w skale.

W Polsce kopaliny ilaste stanowią ważną grupę wśród surowców skalnych, których zasoby bilansowe oceniono na 58 123,89 mln Mg [21]. Ich złoża występują na terenie całego kraju. Największe znaczenie w bilansie zasobów kraju mają bentonity i ily bentonitowe oraz kopaliny kaolinitowe.

Bentonity są skałami ilastymi, powstałyymi w wyniku montmorillonizacji szkliwa wulkanicznego, występującymi w osadach piroklastycznych, takich jak tufo czy tuft. Zbudowane są przede wszystkim z minerałów grupy smektytu (głównie montmorillonitu), którym towarzyszą resztki materiału piroklastycznego, reprezentowane przez takie minerały jak np. sanidyn, biotyt, kwarc, minerały ciężkie, a także szkliwo wulkaniczne, opal krystobalitoowy oraz zeolity. Towarzyszą złożom bazaltów na Dolnym Śląsku (kopalnia Krzeniów). Występują również w warstwach porębiskich poniżej pokładu 610, w obszarze Bytomia-Radzionkowa, Chorzowa, Sosnowca, Czeladzi. Kompleks ilów bentonitowych, o grubości 6–8 m, zawiera zmienną ilość montmorillonitu. W spodej części kompleksu zawartość tego minerału dochodzi do 90%. W kopalni „Powstańców Śląskich” zasoby bilansowe wynoszą 643 tys. Mg, w kopalni „Saturn 1” 180 tys. Mg, w tym zasoby przemysłowe 426 tys. Mg [39].

Duże znaczenie surowcowe mają również beidellite odmiany neogenskich ilów serii poznańskiej towarzyszące pokładom złoś węglowi brunatnych kopalni „Turów”, „Belchatów”, „Konin” i „Adamów” [69]. Ily te są wykorzystywane przede wszystkim do produkcji keramzytu, cementu, jako warstwy uszczelniające składowiska lub pionowe przesłony ilowe, materiał do stabilizacji składowisk popiołów i uszczelnienia górotworu w kopalniach węgla kamiennego [61].

Tylko nieliczne kopaliny naturalne nadają się do bezpośredniego zastosowania jako adsorbenty. W celu zwiększenia ich zdolności sorpcyjnych poddaje się je modyfikacjom: termicznym, kwasowym, zasadowym bądź też poprzez wprowadzenie kationów organicznych w przestrzeni międzykationowych minerałów ilastych, w tym tetrametylu amonu (TMA+), metakrylanu metylu i chlorku (3-akrylomcpolypropilo-trimetylo-amoniowego (AATAC)). Wprowadzenie oligokationów zwiększa odległości międzypakietowe minerałów smectyttykowych i powoduje, że powierzchnia staje się bardziej hydrofilowa i wzrasta ich pojemność sorpcyjna [29].
4.3. Materiał i metodyka badań

4.3.1. Sorbenty użyte w badaniach

Do badań wybrano 2 ilości towarzyszące pokładam złóż węgl brunatnych KWB „Belchatów” i KWB „Adamów”.

Były to:
– beidellitowe ilości plioceńskie z odkrywki Belchatów KWB „Belchatów” – IB,
– zielone ilości miocenii serii poznańskiej z odkrywki Władysławów KWB „Adamów” – IA.

Próbki iłów pobrano bezpośrednio ze złóż, wysuszono w temperaturze pokojowej (22 ± 3°C) i rozdrobniono do frakcji < 1,0 mm. Z próbki ogólnej pobrano reprezentatywne próbki laboratoryjne o masie 1 kg i przeznaczone je do badań właściwości fizykochemicznych, zdolności sorpcyjnych w stosunku do barwników oraz aktywacji.

Opis metod badań oraz charakterystyka składu mineralnego, właściwości fizycznych, fizykochemicznych i chemicznych ilów zostało dokładnie omówione w monografii [57].

W niniejszej monografii podano jedynie rodzaj metody i aparaturę użytą do określenia składu mineralnego, analizy jakościowej grup funkcyjnych, składu chemicznego, a także najważniejsze właściwości ilów mogące mieć istotny wpływ na ich zdolności sorpcyjne [8].

Skład mineralny ilów oznaczono metodą proszkową dyfrakcji promieniowania rentgenowskiego. Dyfraktogramy preparatów rejestrowano za pomocą dyfraktometru rentgenowskiego Phillips APD X’Pert PW 3020 wyposażonego w grafitowy monochromator refleksyjny. Stosowano następujące parametry: promieniowanie CuKα, prąd lampy 30 mA, napięcie lampy 35 kV. Pomiary prowadzono w zakresie wartości od 2 do 73 wartości kąta 2θ, przy skoku wynoszącym 0,05 co 1s. W celu odróżnienia smektetu od minerału o strukturze mieszanopakietowej przeprowadzono dodatkowe badania rentgenograficzne na orientowanych preparatach nasyconych glikolem etylenowym. Dyfraktogramy próbek ilów porównano biorąc pod uwagę położenie i intensywność pików.

Grupy funkcyjne w badanych próbkach ilów oznaczono za pomocą spektroskopii w podczerwieni z zastosowaniem transformacji Fouriera. Widma FTIR dla próbek ilów zostały zarejestrowane w postaci transmisjowej przy wykorzystaniu spektrometru FTIR Magna firmy Nicolet. Parametry pomiaru: liczba skanów badanej próby – 50, liczba skanów tła – 50, rozdzielczość – 4 cm⁻¹, detektor – DTGS KBr (deuterowany triglicynosiarczan z KBr), beamsplitter-XT-KBr (dzielnik wiązki wykonany z KBr). Próbki były przygotowane w postaci pastylek z bromkiem potasu KBr. Przygotowanie pastylek polegało na utarciu w moździerzu 150 mg KBr z 2 mg badanego ilu i sprasowaniu tej mieszaniny za pomocą prasy hydraulicznej.
Skład chemiczny oznaczono metodą rentgenowskiej spektrometrii fluorescencyjnej (XRF), przy użyciu sekwencyjnego spektrometru PW 1404 firmy Philips.

Zawartość amorficznych tlenków żelaza oznaczono metodą spektrometrii rentgenowskiej (XRF), przy użyciu sekwencyjnego spektrometru PW 1404 firmy Philips.

Zawartość węgla całkowitego TC i nieorganicznego TIC oznaczono przy użyciu analizatora Eltra CS IR z modułem TIC i detektorem CO2, po spaleniu próbkę w atmosferze tlenu w celu oznaczenia TC i zakwaszeniu 50% roztworem kwasu fosforowego w celu oznaczenia TIC [80].

Pojemność wymiany kationów przedstawiono jako sumę kationów wymienionych (Ca2+, Na+, K+ i Mg2+) oznaczonych w wyciągu 1 M octanu amonu o pH 7,0 i wodoru hydrolitycznego (H+Hyd) oznaczonych w wyciągu o pH 8,2 na bazie chlorku baru i trójetanoloaminy. Stężenie jonów Ca2+, K+ i Na+ oznaczono metodą fotometrii pomiennej (fotometr BWB-XP), Mg2+ – metodą spektrofotometrii AAS (spektrofotometr Thermo Jarrell Ash model AA-Scan-I), a H+Hyd – metodą miareczką z 0,2 M roztworem HCl.

Odczyn w zawiesinie wodnej oznaczono metodą potencjometryczną przy stosunku faza stała: roztwór wynoszący 1:2,5.

Punkt izoelektryczny opisany poprzez pH roztworu, w którym ładunek powierzchni ziarn i powierzchnia (SSA) całkowita określona metodą BET z wykorzystaniem porowatości pary wodnej, a zewnętrznej – porowatości azotu na aparacie Sorptomatic 1990 firmy Fisons, a obliczenia wykonano wg programu Milestone 2000, będącego na wyposażeniu aparatu.

Porowatość oznaczono metodą porozymetrii rtęciowej. Badania przestrzeni porowej przeprowadzono przy pomocy porozymetru AutoPore n 9220 firmy Micrometritics [14, 64]. Otrzymane na podstawie pomiarów parametry (całkowita objętość porów oraz gęstość objętościowa) posłużyły do wyliczenia porowatości otwartej no – w zakresie średnich porów 0,003 μm < d < 300 μm i porowatości aktywnej na – w zakresie średnich porów 0,2 μm < d < 300 μm.

Na podstawie analizy rentgenograficznej próbki nieorientowanej iłu „Belchatów” stwierdzono, że głównym minerałem był Ca-smektyt (d001 14,97 Å), oznaczony przez Kaczyńskiego i Grabowską-Olszewską [49] jako Ca-beidellit, a oprócz niego stwierdzono obecność kwarcu (d 3,34 Å), kalcytu (d 3,02 Å) i kaolinitu (d 7,3 Å) (Rys. 4.1). Obecność smektetu potwierdziła analiza próbk od lypostrukturalnym, na skutek glikolowania próbek położenia piku podstawowego smektetu przesunęło się do wartości d001 17,67 Å.

Natomiast na podstawie analizy dyfraktogramu próbki nieorientowanej iłu „Adamów” (Rys. 4.1), stwierdzono obecność Ca-smektetu (d001 14,97 Å), kwarcu (d 3,34 Å) i kaolinitu (d001 7,2 Å). Analiza w zakresie niskokątowym dyfraktogramu próbki glikolowanej wskazała na obecność w próbie minera-
łu o strukturze mieszanopakietowej S/I z przewagą pakietów smektytowych o czym świadczy przesunięcie piku podstawowego smektytu do wartości d 17,6 Å i pojawienie się przy d_{001} 10 Å piku pochodzącego od illitu.

Rys. 4.1. Dyfraktogramy ilów „Belchatów” i „Adamów” naturalnych i nasyconych glikolem etylenowym

– Analiza widm furierowskiej spektroskopii w podczerwieni (FTIR) ilów „Belchatów” i „Adamów” wykazała obecność (Rys. 4.2):
 – grup -OH skoordynowanych z 2 kationami Al i/lub Mg (pasma o częstotliwości 3623 cm\(^{-1}\) dla ilu „Belchatów” i 3631 cm\(^{-1}\) dla ilu „Adamów”), które są typowe dla smekytów dioktaedrycznych bogatych w jony Al i Mg),
 – wiązań wodorowych występujących między grupami -OH warstwy oktaedrycznej i atomami tlenu warstwy tetraedrycznej w smektytach (szerokie pasmo w zakresie częstości 3500–3000 cm\(^{-1}\), stwierdzone w próbkach obu ilów),
 – cząsteczek wody (pasmo absorpcyjne o częstości 1654 cm\(^{-1}\) (il „Belchatów”) i 1668 cm\(^{-1}\) (il „Adamów”)),
 – grup -Si-O w warstwach tetraedrycznych (pasma przy częstości 1054 cm\(^{-1}\) i 474 cm\(^{-1}\) (il „Belchatów”) oraz 1051 cm\(^{-1}\) i 474 cm\(^{-1}\) (il „Adamów”)),
 – grup -Al\(_2\)-OH w warstwie oktaedrycznej (pasmo o częstości 921 cm\(^{-1}\) (il „Belchatów”) i 917 cm\(^{-1}\) (il „Adamów”)),

Rys. 4.1. Dyfraktogramy ilów „Belchatów” i „Adamów” naturalnych i nasyconych glikolem etylenowym
– grup Si-O-Al, w których Al występuje w koordynacji 6 (pasmo rozciągające o częstości 536 cm\(^{-1}\) w próbkach obu ilów),
– grup Si-O-Si w warstwach tetraedrycznych (pasma przy częstości 466 cm\(^{-1}\) w próbkach obu ilów),
– grup AlFe-OH, świadczących o podstawieniach Fe\(^{2+}\) za Al\(^{3+}\) w warstwie oktaedrycznej (pasmo przy częstości 873 cm\(^{-1}\) – tylko w próbie ilu „Belchatów”).

Kształt widma ilów wskazuje ponadto na obecność w próbkach ilu faz nie-smektytowych. Pasmo absorpcyjne przy częstości 3623 cm\(^{-1}\) (il „Belchatów”) i 3631 cm\(^{-1}\) (il „Adamów”) odpowiadające za drgania rozciągające grup \(-\text{OH}\) oraz przy 921 cm\(^{-1}\) (il „Belchatów”) i 917 cm\(^{-1}\) (il „Adamów”) mogą wskazywać na obecność kaolinitu. Natomiast dublet przy częstości 800 i 792 cm\(^{-1}\) (il „Belchatów”) i 802 cm\(^{-1}\) i 792 cm\(^{-1}\) (il „Adamów”) pochodzi od grup -Si-O kwarcu, a pasmo absorpcyjne przy częstości 1448 cm\(^{-1}\) stwierdzone jedynie w próbie ilu „Belchatów” świadczy o obecność kalcytu CaCO\(_3\), których obecność została również stwierdzona metodą dyfrakcji promieniowania rentgenowskiego.

Badania spektrometryczne w podczerwieni pokazały, że głównymi powierzchniowymi grupami funkcjonalnymi ilów są grupy silanolowe -Si-OH, aluminołowe -Al\(_2\)-OH oraz grupy -AlFe-OH odpowiadające za ładunek powierzchni ziem koloidalnych oraz mogące być zarówno donorami jak i akceptorami protonów w wiązaniu wodorowym.

Rys. 4.2. Widma FTIR w podczerwieni próbek ilu „Belchatów” i „Adamów”

Skład chemiczny odzwierciedlał skład mineralny ilów. Il „Adamów” charakteryzował się wyższą zawartością SiO\(_2\) na poziomie 64,70%. Obie próbki ilów charakteryzowały się stosunkowo wysoką zawartością żelaza wyrażoną jako Fe\(_2\)O\(_3\) – IB 6,45% i IA – 4,37%, przy czym w przeważającej ilości było to żelazo wchodzące w skład struktury krystalicznej smektytów. Zawartość mineralów własnych oznaczona jako Fe wolne amorficzne stanowiła 1,41 – 3,31% Fe ogólnego. Il „Adamów” charakteryzował się wyższą zawartością K\(_2\)O ze wzglę-
du na obecność pakietów illitowych. Głównymi kationami wymiennymi w minerałach ilastych budujących ily były jony Ca$^{2+}$ i Mg$^{2+}$. Ze względu na wyższą zawartość kwarcu i obecność pakietów illitowych w strukturze minerałów smektytowym il „Adamów” charakteryzował się on niższą powierzchnią właściwą i pojemnością wymiany kationów, przy zbliżonej porowatości jak il „Belchatów” (Tab. 4.1).

<table>
<thead>
<tr>
<th>Skład chemiczny</th>
<th>II „Belchatów”</th>
<th>II „Adamów”</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$, Al$_2$O$_3$, Fe$^3+$_O, MgO, Na$_2$O, K$_2$O</td>
<td>55,81%, 15,25%, 6,45%, 1,4%, 0,42%, 0,7%</td>
<td>64,70%, 13,65%, 4,37%, 1,37%, 0,11%, 1,50%</td>
</tr>
<tr>
<td>Fe wolne amorficzne</td>
<td>634,5 mg/kg = 1,41% Fe$_3$, węgiel całkowity</td>
<td>1014 mg/kg = 3,31% Fe$_3$, węgiel całkowity</td>
</tr>
<tr>
<td>1,4%, w tym jako węgiel nieorganiczny 1,8%</td>
<td>0,20%, w tym węgiel organiczny 0,20%</td>
<td></td>
</tr>
</tbody>
</table>

Powierzchnia właściwa całkowita SSA(H$_2$O) (m2/g)	141,8	70,47
Powierzchnia właściwa zewnętrzna SSA(N$_2$) (m2/g)	41,38	45,56
Porowatość całkowita n_o	0,0682	0,0823
Porowatość aktywna n_a	0,0128	0,0211
Pojemność wymiany kationów CEC (cmol+/kg)	82,39	31,58
pH(H$_2$O)	7,95	7,83
Punkt izoelektryczny pH$_{pzc}$	7,42	6,95

4.3.2. Barwniki

Do badań laboratoryjnych, polegających na określeniu pojemności sorpcyjnej ilów w stosunku do barwników, wybrano 14 barwników z grupy barwników reaktywnych, bezpośrednich i kwasowych, najczęściej stosowanych do barwienia tkanin. Barwniki pochodziły z Zakładów Boruta-Zachem Kolor Sp. z o.o., który jest głównym producentów barwników i pigmentów w Polsce.

Przy opisie poszczególnych barwników podano ich indywidualne nazwy (tzw. nazwy generyczne), wzór i masę cząsteczkę (M) oraz długość fali (λ), przy której występuje maksymalna absorbancja promieniowania widzialnego w zakresie 380–780 nm i przy której prowadzone były oznaczenia stężenia poszczególnych barwników w roztworach wodnych, a także pH w wodnych roztworach barwników o stężeniu 1 g/dm3. Ponadto charakteryzując barwniki uwzględniono
indeks barw \((\text{color index C.I.})\) oraz numery CAS, które są numerycznym oznaczeniem przypisanym substancji chemicznej przez amerykańską organizację Chemical Abstracts Service (CAS) pozwalającym na identyfikację substancji, w szczególności takich, które istnieją pod różnymi nazwami [27]. Do takich związków należą barwniki. Przykładem zróżnicowanego nazewnictwa barwników może być jeden z barwników użytych w badaniach sorpcji – Acid green 16, który występuje pod 12 różnymi nazwami, tj. Acid Green Zh, Acid Pure Green V, Amido Green V, C.I. 44025, C.I. Acid Green 16, Duasyn Acid Green V, Erio Green B, Lissamine Green V, Lissamine Green V 200, Merantine Green V, Naphthalene Green V, Naphthalene Green VS. Natomiast barwnik Basic Violet 3 można spotkać pod 123 nazwami włączając w to nazwy występujące w różnych językach.

W badaniach sorpcji wykorzystano następujące barwniki:
- z grupy barwników reaktywnych (Rys. 4.3a):
 - Reactive blue 81 (RB-81), C.I. 18245, CAS 75030-18-1, C25-H14-Cl2-N7-O10-S3.3Na, M 808 g/mol, \(\lambda\) 584 nm, pH 4,97,
 - Reactive red 198 (RR-198), C.I. 18221, CAS 145017-98-7, C27-H18-Cl-N7-O16-S5.4Na, M 983,5 g/mol, \(\lambda\) 508 nm, pH 4,99,
 - Reactive black 5 (RBk-5), C.I. 20505, CAS 17095-24-8, C26-H21-N5-O19-S6.4Na, M 991,8 g/mol, \(\lambda\) 584 nm, pH 4,53,
 - Reactive blue 19 (RB-19), C.I. 61200, CAS 2580-78-1, C22-H16-N2-O11-S3.2Na, M 626,5 g/mol, \(\lambda\) 405 nm, pH 4,95;
Rys. 4.3a. Wzory strukturalne badanych barwników reaktywnych

– z grupy barwników bezpośrednich (Rys. 4.3b):

Direct yellow 142 (DY-142), C.I. 24895, CAS 71902-08-4, C19-H20-N5-O3-Cl, M 401,5 g/mol, λ 392 nm, pH 6,95,
Direct red 81 (DR-81), C.I. 28160, CAS 2610-11-9, C29-H19-N5-O8-S2.2Na, M 675,6 g/mol, λ 510 nm, pH 8,22,
Direct blue 74 (DB-74), C.I. 34146, CAS 33540-94-2, C36-H21-N7-O13-S4.4Na, M 979,8 g/mol, λ 582 nm, pH 8,03;

Rys. 4.3b. Wzory strukturalne badanych barwników bezpośrednich
– z grupy barwników kwasowych (Rys. 4.3c):

Acid blue 9 (AB-9), C.I. 42090, CAS 2650-18-2, C37-H36-N2-O9-S3.2H3-N, M 782 g/mol, λ 630 nm, pH 6,09,
Acid red 18 (AR-18), C.I. 16255, CAS 2611-82-7, C20-H11-N2-O10-S3.3Na, M 604.5 g/mol, λ 506 nm, pH 7,65,
Acid green 16 (AG-16), C.I. 44025, CAS 12768-78-4, C27-H27-N2-O6-S2, M 539 g/mol, λ 426 nm, pH 5,67,
Acid black 1 (ABk-1), C.I. 20470, CAS 1064-48-8, C22-H14-N6-O9-S2.2Na, M 616.5 g/mol, λ 619 nm, pH 7,95;

![Acid blue 9 (AB-9)](image1)
![Acid red 18 (AR-18)](image2)

![Acid green 16 (AG-16)](image3)
![Acid black 1 (ABk-1)](image4)

Rys. 4.3c. Wzory strukturalne badanych barwników kwasowych

– z grupy barwników metalokompleksowych (Rys. 4.3d):

Acid blue 193 (AB-193), C.I. 15707, CAS 12392-64-2, C40-H22-Cr-N4-O10-S2.2Na, M 880.7 g/mol, λ 577 nm, pH 6,70,
Acid black 194 (ABk-194), C.I. 15711:1, CAS 57693–14–8, C40-H20-Cr-N6-O14-S2-2Na, M 970.7 g/mol, λ 570 nm, pH 5,11.
Barwniki RB-81, RR-198, RBk-5, RY-42, DR-81, DB-74, AR-18, ABk-1, AB-193 i ABk-194 miały charakter anionowy, natomiast DY-142, AB-9 oraz AG-16 – charakter kationowy.

4.3.3. Metoda oznaczenie zdolności sorpcyjnych ilów

Zdolności sorpcyjnych ilów neogeńskich w stosunku do wybranych barwników wyznaczono metodą statyczną „batch”, z roztworów w zakresie stężeń 1–1000 mg barwnika na 1 dm³ roztworu. Stosunek faza stała (m): roztwór (V) wynosił 1:20 (tj. 1 g próbki i 20 ml roztworu barwnika), natomiast czas wytrząsania – 24 h. Początkowe (C₀) i równowagowe (Cₑq) stężenia barwników w roztworze oznaczono metodą spektrometrii UV/VIS przy użyciu spektrofotometru Cary 50 Scan firmy Varian. Pomiary były prowadzone przy długości fali, dla której rejestrowano maksymalną absorbancję promieniowania widzialnego z zakresu 380–780 nm.

Zasorbowaną ilość barwnika (S) wyliczono ze wzoru:

\[S = (C₀ - Cₑq) \cdot V/m, \text{ mg/kg} \] (4.1)

Natomiast stopień usunięcia – retencji (R) barwników z roztworu wyliczono ze wzoru:

\[R = \frac{C₀ - Cₑq}{C₀} \cdot 100\%, \text{ (}) \] (4.2)

W roztworach równowagowych mierzono również pH.
Następnie wyznaczono izotermy sorpcji barwników przez próbki ilów w układzie $S = f(C_{eq})$. Natomiast stopień usunięcia barwników z roztworu przedstawiono na wykresach w układzie $R = f(C_0)$.

Aby określić czy barwniki występują w roztworze początkowym w postaci monomerów czy ulegają polimeryzacji, przeprowadzono skanowanie widm roztworów barwników o stężeniach 1, 5, 10, 25 i 50 mg/dm³ w zakresie światła widzialnego, co 1 nm.

4.4. Zdolności sorpcyjne ilów w stosunku do wybranych barwników

4.4.1. Sorpcja barwników reaktywnych na ilach naturalnych

Izotermy sorpcji barwników reaktywnych: RB-81, RR-198, RBk-5, RB-19 oraz RY-42 na próbkach ilu „Belchatów” i ilu „Adamów” przedstawiono w układzie $S = f(C_{eq})$ (Rys. 4.4a), a stopień usunięcia barwników z roztworu – w układzie $R = f(C_0)$ (Rys. 4.4b).

Analizując zasorbowaną ilość barwników (S) i stopień ich usunięcia (R) w zależności od stężenia barwnika w roztworze stwierdzono, że wraz ze wzrostem ich stężenia początkowego w roztworze wzrasta ilość zasorbowanych barwników, natomiast stopień ich usunięcia – maleje.

Spośród badanych barwników reaktywnych najwyższą pojemność sorpcyjną w stosunku do ilu smektytowego „Belchatów” wykazywał barwnik RB-19. Pojemność sorpcyjna ilu wzrastała od 19 mg/kg, przy stężeniu równym 1 mg/dm³, do 18648 mg/kg przy stężeniu wynoszącym 1000 mg/dm³. W całym zakresie stężeń początkowych barwnik ten był usuwany na poziomie 97–91,5%. Pozostałe barwniki reaktywne wiązane były przez il „Belchatów” o naturalnym kompleksie sorpcyjnym w znacznie mniejszych ilościach. W zakresie niskich stężeń początkowych od 1 do 50 mg/dm³ barwniki te były wiązane od 92 mg/kg (RY-42) do 344 mg/kg (RB-81), co oznacza stopień retencji w zakresie 9,15–33,8%.

Przy maksymalnym stężeniu początkowym barwnik RB-81 był wiązany w ilości 2870 mg/kg (tj. 14,15%), RBk-5 – w ilości 4410 mg/kg (22,71%), RY-42 – w ilości 1944 mg/kg (9,58%), a RR-198 – w ilości 2920 mg/kg (14,78%).

Natomiaśt na ziarnach ilu „Adamów” dwa barwniki reaktywne, tj. RR-198 i RY-42, były wiązane w całym zakresie stężeń początkowych w większych ilościach niż na ziarnach ilu „Belchatów”. Dla maksymalnego stężenia początkowego barwnik RR-198 był wiązany w ilości 4168 mg/kg (21,10%), a RY-42 – w ilości 5100 mg/kg (25,13%). Pozostałe barwniki reaktywne wykorzystane w badaniach były wiązane w znacznie mniejszych ilościach niż przez il „Belchatów”. Maksymalna pojemność sorpcyjna ilu „Adamów” w stosunku do RB-81, RBk-5 i RB-19 wynosiła odpowiednio 1600 mg/kg (7,89%), 2500 mg/kg (12,79%) i 13074 mg/kg (64,18%).
Stosując klasyfikację Giles’a [40], sorpcja barwnika RB-19 na ziarnach ilu „Belchatów” przebiegała wg typu H, a na ziarnach ilu „Adamów” wg typu L. Izotermie sorpcji pozostałych barwników zakwalifikowano do typu S.

Stromy kształt izoterm sorpcji RB-19 na ziarnach obu ilów w porównaniu do pozostałych izoterm świadczy o bardzo dużym powinowactwie tego barwnika do centrów sorpcyjnych obu ilów.

Rys. 4.4a. Doświadczalne izotermie sorpcji barwników reaktywnych przez il „Belchatów” i „Adamów”

Rys. 4.4b. Stopień retencji barwników reaktywnych z roztworu przez il „Belchatów” i „Adamów”

Duża pojemność buforowa ilów [57], wynikająca z obecności kationów wymiennych i kalcytu obecnego w próbie ilu „Belchatów” spowodowała, że sorpcja odbywała się przy praktycznie stałych wartościach pH, zbliżonych do wartości pH ilu (7,95 i 7,83), mimo kwaśnego odczynu roztworów wodnych samych barwników (Rys. 4.5).

Stwierdzono, iż sorpcja przebiegała przy pH wyższym niż punkt izoelektryczny ilów „Belchatów” i „Adamów” (pH PZC 7,42 i 6,95) co oznacza, że ładunek powierzchni ziaren mineralów ilastych o rozmiarach koloidalnych był
ujemny wyniku dysocjacji, zgodnie z reakcją AOH↔AO+H⁺ (A = Al lub Si), grup aluminolowych -Al₂OH i silanolowych -SiOH mineralów ilastych oraz grup -SiOH koloidalnych ziarn kwarcu.

Rys. 4.5. Zmiany wartości pH zawiesin towarzyszących sorpcji barwników reaktywnych na ziarnach ilu „Belchatów” i „Adamów”

Badane barwniki reaktywne należą do barwników anionowych i wykazują wysokie powinowactwo do powierzchni o dodatnim ładunku. Ponieważ ziarna badanych ilów w roztworach wodnych posiadasą ładunek ujemny, nie mogą wiązać tego typu barwników w wyniku oddziaływań elektrostatycznych. Natomiast barwniki te posiadają grupy funkcyjne zawierające atomy silnie elektroujemne takie jak O i N, które mogą tworzyć wiązania wodorowe z powierzchniowymi grupami funkcyjnymi mineralów ilastych. W wiązaniach tych grupy silanolowe i aluminolowe mogą zachowywać się jak grupy protonodonorowe OH...:N. Jednocześnie grupy te mogą zachowywać się jak grupy wodorowo-akceptorowe w wiązaniu wodorowym z grupami -OH, =NH i -NH₂ barwników NH...:O. Biorąc pod uwagę energię powstającego wiązania, wydaje się, że grupy silanolowe i aluminolowe będą pełnić rolę akceptora protonów w wiązaniu barwników poprzez mostek wodorowy.

Wysoką podatność barwnika RB-19 do sorpcji na ilach można tłumaczyć jego budową chemiczną. Cząsteczka barwnika zawiera grupy chinonowe w pozycji para, które mogą brać bezpośrednio udział w wiązaniu wodorowym jako grupa wodorowo-akceptorowa lub ulegać redukcji do -OH i stanowić centrum protonodonorowe. W czasie sorpcji barwnika przez ily „Belchatów” i „Adamów” nastąpiła zmiana odczynu roztworu równowagowego z pH 3,96 na odpowiednio 8,57 i 8,23. Towarzyszyła jej zmiana warunków redox z utleniających Eh 356 mV na redukcyjne odpowiednio 168 i 176 mV, co potwierdza możliwość redukcji grup chinonowych do -OH.

Analizując wpływ ilości i rodzaju grup funkcyjnych obecnych w barwnikach na ich sorpcję stwierdzono, że wraz ze wzrostem ilości grup donorowych, np. -OH, =NH, -NH₂ w cząsteczce barwnika wzrastała ilość wiązanych barwni-
ków przez ily, natomiast wzrost ilości grup -SO₃Na powodował spadek sorpcji (np. RBk-5 i RY-42).

4.4.2. Sorpcja barwników bezpośrednich na ilach naturalnych

Izotermy sorpcji barwników bezpośrednich DY-142, DR-81 i DB-74 przez ily „Belchatów” i „Adamów” przedstawiono na rys. 4.6a, a stopień retencji barwników – na Rys. 4.6b.

Ił „Belchatów” wykazał wysoką zdolność do wiązania barwników DY-142 i DR-81 w całym zakresie stężeń. Przy maksymalnym stężeniu początkowym pojemność sorpcyjna ilu w stosunku do barwnika DY-142 wynosiła 18378 mg/kg, a w stosunku do barwnika DR-81 – 16932 mg/kg, zaś stopień retencji tych barwników wynosił odpowiednio 92,35 i 87,10%. Natomiast barwnik DB-74 był wiązany przez il w znacznie mniejszych ilościach, maksymalnie 4700 mg/kg (22,66%).

Natomiast il „Adamów” wiązał barwniki DY-142 i DR-81, w zakresie stężeń początkowych 1–250 mg/dm³, w ilościach podobnych jak il „Belchatów” do 4700 mg/kg. Jednak wraz ze wzrostem ich stężeń w roztworze, jego pojemność sorpcyjna była mniejsza, maksymalnie w stosunku do DY-142 – 15000 mg/kg (75,8%) i DR-81 – 11264 mg/kg (57,94%).

Barwnik DB-74 wiązany był przez il „Adamów” w ilościach zbliżonych jak przez il „Belchatów”, maksymalnie 5170 mg/kg (24,93%).

![Rys. 4.6a. Doświadczalne izotermy sorpcji barwników bezpośrednich przez il „Belchatów” i „Adamów”](image-url)
Stwierdzono, że pojemność sorpcyjna badanych iłów w stosunku do barwników bezpośrednich maleła wraz ze wzrostem ich masy cząsteczkowej.

Wysokie powinowactwo barwnika DY-142 do ziaren iłów wynikało z kationowego charakteru barwnika. Jako kation może on być wiązany w wyniku oddziaływań elektrostaticznych z ujemnie naładowaną powierzchnią ziaren mineralów ilastych. Obecność grup -OH, =NH, -NH₂ w cząsteczce barwników sugeruje możliwość powstawanie również wiązań wodorowych w reakcji z grupami powierzchniowymi mineralów budujących iły (-SiOH, -Al₂OH). Natomiast pozostałe barwniki mogą być wiązane jedynie poprzez wiazania wodorowe.

Wysoka sorpcja barwnika DR-81 przez iły najprawdopodobniej była spowodowana zdolnością barwnika do polimeryzacji przy wyższych stężeniach w roztworze [56]. Analiza widma absorpcyjnego roztworu barwnika DR-81 o stężeniu 25 mg/dm³, wskazała na obecność piku przy długości fali 510 nm oraz piku, będącego efektem zwiększonego stężenia, przy długości fali 398 nm (Rys. 4.8).
Występowanie dodatkowego piku w widmie roztworu barwnika sugeruje, że wraz ze wzrostem jego stężenia w roztworze, ulega on polimeryzacji. W roztworze oprócz monomerów występują także dimery lub bardziej złożone cząsteczki i w takiej postaci ulegają sorpcji, co może znacznie zwiększyć skuteczność ich usuwania z roztworu. Na zdolność do agregacji, w roztworze przy wyższych stężeniach, barwników zwłaszcza zawierających grupy fenolowe wskazują badania Navarro i Sanz [68].

Wg klasyfikacji Giles’a izotermy sorpcji barwników DY-142 i DR-81 na ziarnach iłu „Belchatów” zaliczono do typu H (Rys. 4.6a). Natomiast na ziarnach iłu „Adamów” sorpcja ich przebiegała według izotermy L. Barwnik DB-74 wiązany był przez oba iły wg izotermy S.

4.4.3. Sorpcja barwników kwasowych na iłach naturalnych

Izotermy sorpcji barwników kwasowych AR-18, AB-9, AG-16, ABk-1 przez iły „Belchatów” i „Adamów” przedstawiono na Rys. 4.9a, a stopień retenции barwników kwasowych z roztworów – na Rys. 4.9b.

Iły charakteryzowały się zróżnicowaną pojemnością sorpcyjną w stosunku do badanych barwników kwasowych zależną od budowy chemicznej cząsteczki barwnika.

Najwyższe powinowactwo do powierzchni iłu „Belchatów” wykazywał barwnik AB-9. Barwnik ten w całym zakresie stężeń wiązany był na poziomie 86–98%, a przy maksymalnym stężeniu początkowym wynoszącym 1000 mg/dm³ barwnik ten usuwany był w ilości 19774 mg/kg, co stanowiło 97,66%. Również barwnik AG-16 wiązany był w wysokich ilościach maksymalnie 12070 mg/kg (61,21%). Dwa pozostałe barwki kwasowe AR-18 i ABk-1 wiązane były przez ił „Belchatów” w znacznie mniejszych, zbliżonych do siebie ilościach, maksymalnie odpowiednio 2160 mg/kg (10,56%) i 2460 mg/kg (12,58%) (Rys. 4.9a, 4.9b). Stwierdzono, że ił ten wykazywał niską pojemność sorpcyjną w stosunku do obu barwników w całym zakresie stężeń.
Il „Adamów” w najwyższych ilościach wiązał barwnik AB-9. Barwnik ten był wiązany w zakresie od 19 (przy \(C_0 = 1 \text{ mg/dm}^3\)) do 28248 mg/kg (przy \(C_0 = 1000 \text{ mg/dm}^3\)), co stanowiło 94 – 90,12%. W porównaniu do ilości, wiązanych, przez il „Belchatów”, maksymalna ilość zasorbowana była mniejsza o jedyne 7,72%. W stosunku do barwników AG-16 i AR-18 il „Adamów” charakteryzował się niższymi pojemnościami sorpcyjnymi niż il „Belchatów”, odpowiednio o 32,85% i 35,64%. Jedynie w stosunku do barwnika ABk-1 il „Adamów” posiadał wyższą o 11% pojemność sorpcyjną, mimo to barwnik ten usuwany był w dalszym ciągu w ilościach niskich, przy maksymalnym stężeniu początkowym stopień jego retencji wynosił 14%.

Wysokie powinowactwo barwnika AB-9 do ilów wynika zarówno z budowy cząsteczki, która jest solą wewnętrzną z ładunkiem dodatnim zlokalizowanym przy atomie N, jak również ze zdolności barwnika do polimeryzacji przy stężeniu w roztworach wodnych wyższym niż 10 mg/dm³. W związku z tym wiązany on mógł być przez ily oprócz monomerów także w formie dimerów lub wyżej spolimeryzowanych cząsteczek, co mogło mieć wpływ na wzrost skuteczności jego usuwania z roztworów.

Natomiast wysoka sorpcja barwnika AG-16 wynika z kationowego charakteru barwnika i silnego powinowactwa do powierzchni ziarn mineralów budujących ily o ujemnym ładunku powierzchni (Rys. 4.9a).

Stosując klasyfikację izoterm Giles’a, jedynie izoterma sorpcji barwnika AB-9 na ziarnach obu ilów należała do typu H, natomiast pozostałe barwniki były wiązane wg izotermy S.

Sorpcja barwników odbywała się przy pH w granicach 7,80–8,22 i ujemnie naładowanej powierzchni mineralów ilastych (Rys. 4.10). Niska pojemność sorpcyjna barwników ABk-1 i AR-18 wynikała z wartości pH, przy których przebiegał proces sorpcji. Wyniki badań Özcan [73] i Lin [58] pokazują, iż anionowe barwniki kwasowe ABk-1 i AR-18 wiązane są w największych ilościach na glinokrzemianach przy niskich wartościach pH, ok. 2,0.

Rys. 4.9a. Doświadczalne izotermy sorpcji barwników kwasowych przez il „Belchatów” i „Adamów”
4.4.4. Sorpcja barwników metaloorganicznych na iłach naturalnych

Iły „Belchatów” i „Adamów” charakteryzowały się niskimi, podobnymi pojemnościami sorpcyjnymi w stosunku do barwnika AB-193, maksymalnie odpowiednio 1996 mg/kg i 1936 mg/kg (Rys. 4.11a). Natomiast barwnik ABk-194 wiązany był przez oba ily w całym zakresie stężeń początkowych 1–1000 mg/dm³ w ilościach znacznie większych, maksymalnie odpowiednio 7600 mg/kg (38,64%) i 8040 mg/kg (40,87%).

Podobnie jak w przypadku pozostałych barwników, sorpcja przebiegała przy niewielkich zmianach pH w zakresie 7,02–8,00 (Rys. 4.12).

Bardzo niska pojemność sorpcyjna ilów w stosunku do barwnika AB-193 wynikała przede wszystkim z wartości pH, przy których przebiegała sorpcja. Alkaliczny odczyn i ujemny ładunek powierzchni ilów oraz anionowy charakter barwnika ograniczył ilość wiązanych jonów barwnika AB-193. Barwnik ten najsilniej wiązany jest przez glinokrzemiany przy pH około 2, gdy powierzchnia ziarn uzyskuje ładunek dodatni w reakcji SiOH+H+=SiOH₂⁺.
dana prowadzone przez Özcana [72, 74] na sepiolitach wskazują, że barwnik ten wiązany jest w największych ilościach przy pH 1,5. Ponadto cząsteczka badanego barwnika AB-193 zawiera 14 miejsc akceptorowych zlokalizowanych w grupach -SO₃Na i -N=N- i nie zawiera grup donorowych, co również może istotnie zmniejszać jego powinowactwo do centrów aktywnych badanych sorbentów.
Natomiast barwnik ABk-194, mimo anionowego charakteru, był wiązany w około 4-krotnie wyższych ilościach niż AB-193 w całym zakresie stężeń po-czątkowych. Wyższa sorpcja barwnika ABk-194 może wynikać z budowy jego cząsteczki, która zawiera 4 miejsca donorowe zlokalizowane w grupach -OH i 12 miejsc akceptorowych zlokalizowanych w grupach -SO₃Na, -N=N- i -NO₂.

Wg klasyfikacji Giles’a izotermy sorpcji barwnika AB-193 na ziarnach iłu „Belchatów” i „Adamów” zaliczono do typu L. Natomiast barwnik ABk-194 wiązany był przez oba iły według izotermy S.

4.5. Podsumowanie

Na podstawie przeprowadzonych badań pojemności sorpcyjnej dwóch neogońskich ilów smektytowych towarzyszących prasypkach gruntu iłowych, znaleziono wyższe zdolności iły „Belchatów” do wiązania wszystkich badanych barwników. Ze względu na dobrą właściwość buforowe ilów sorpcja wszystkich badanych barwników przebiegała przy pH wyższym niż ich punkt izoelektryczny (pHₚzc 7,42 i 6,95), co oznacza, że ładunek powierzchni ziaren mineralów ilastych i kwarcu o rozmiarach koloidalnych był ujemny z powodu obecności zdysocjowanych powierzchniowych grup silanolowych -SiOH oraz grup aluminolowych -Al₂OH zlokalizowanych na krawędziach i narożach ziaren mineralów ilastych.

Najwyższą pojemność sorpcyjną badanych ilów odnotowano w stosunku do barwników o charakterze kationowym (DY-142, AG-16). Były one wiązane głównie poprzez oddziaływania elektrostatyczne między kationem barwnika a powierzchnią ziarn mineralów budujących ily. Ponadto zdolność niektórych barwników o charakterze anionowym (DR-81, AB-9) do polimerizacji związana była z ujemnym pHₚzc izotermy i zwiększyła skuteczność ich usuwania, gdyż wiązane są one w postaci dimerów lub wyżej spolimeryzowanych cząsteczek.

Pozostałe barwniki anionowe były wiązane w mniejszych ilościach poprzez wiązania wodorowe powstające między grupami =NH, -NH₂, -OH barwników pełniących w wiązaniu rolę grup donorowych i grupami silanolowymi i aluminolowymi mineralów ilastych, pełniących rolę akceptorów protonów. W najmniejszych ilościach wiązany był barwnik AB-193. W budowie jego cząsteczek brak było miejsc donorowych.

Przeprowadzone badania wskazują na sorpcję powierzchniową, co oznacza, że zwiększenie porowatości, powierzchni właściwej i ilości centrów sorpcyjnych może zwiększyć pojemność sorpcyjną badanych ilów w stosunku do barwników anionowych.
5. Modyfikacja mineralów ilastych

5.1. Metody modyfikacji mineralów ilastych

W zależności od przeznaczenia sorbentów mineralnych, przede wszystkim w celu zwiększenia zdolności sorpcyjnej, bardzo często ich właściwości są dodatkowo modyfikowane. Wyniki badań laboratoryjnych wskazują na silny wzrost pojemności sorpcyjnej bentonitu modyfikowanego w stosunku do jonów metali (np. 10-krotny dla jonów Pb(II) [24]). Również w wyniku aktywacji chemicznej krzemianów i glinokrzemianów wzrasta ich pojemność sorpcyjna w stosunku do zanieczyszczeń organicznych, w tym barwników, np. w stosunku do Reactive blue 19 [41]. Stwierdzono również, że aktywacja zasadowa sepiolitu powoduje około 2,6-krotny wzrost jego pojemności sorpcyjnej w stosunku do fioletu krystalicznego (barwnika zasadowego) [35].

Brak jest natomiast w literaturze wyników badań dotyczących aktywacji skał ilastych – w tym ilów – ze względu na trudności analityczne, ponieważ w ich skład wchodzą minerały o różnej odporności chemicznej. Przyczyniają się do tego także różne typy montmorillonitów budujących skały ilaste.

Wśród metod modyfikacji trójwarstwowych mineralów ilastych wyróżnia się:

- modyfikację temperaturową,
- wymianę jonową z nieorganicznymi lub organicznymi kationami i anionami,
- aktywację za pomocą kwasów mineralnych,
- interkalację za pomocą nieorganicznych kationów: Al, Zr, Be, Cr, Fe, Ni, Nb, Ta,
- interkalacje dużych organicznych cząsteczek,
- odwadnianie i kalcynację,
- operacje fizyczne, liofilizację, działanie ultradźwiękami lub plazmą.

Obecnie wzrasta zainteresowanie modyfikacją smektytów w kierunku otrzymywania organiczno-nieorganicznych materiałów hybrydowych ze względu na potencjalnie szerokie ich zastosowanie przede wszystkim w syntezie polimerowych nanokompozytów.
Jednak najczęściej modyfikacja glinokrzemianów polega na wstępnnej wymianie jonowej, obróbce termicznej lub działaniu kwasami i zasadami.

Modyfikacja termiczna

Modyfikacja termiczna polega na wygrzewaniu próbek minerałów ilastych w temperaturze od 200 do 700°C w zależności od rodzaju minerału ilastego. W podwyższonych temperaturach zachodzą reakcje dehydratacji (usunięcie cząsteczek wody ze struktury minerału) i dehydroksylacji (usunięcie grup -OH). Dehydratacji ulegają minerały grupy smektytu i illitu. Natomiast dehydroksylacji ulegają minerały kaolinitu, smektytu i illitu. W wyniku tych reakcji następuje wzrost porowatości i powierzchni właściwej [18].

Natomiast aktywacja chemiczna minerałów ilastych polega na wyładowaniu części materiału przez wykorzystanie różnic w rozpuszczalności warstw okta- i tetraedrycznych w obecności różnych rozpuszczalników, wskutek czego są generowane nowe centra adsorpcyjnie aktywne.

Modyfikacja kwasowa

Dla smektytów przeprowadza się przede wszystkim aktywacje roztworami kwasów HCl i H₂SO₄ o różnych stężeniach, przy czym w procesach technologicznych powszechnie używany jest H₂SO₄ [15].

Szybkość przechodzenia oktaedrycznych kationów z sieci do roztworu maleje w szeregu: Mg²⁺ > Fe²⁺ > Fe³⁺ > Al³⁺ [95].

Zmiany w strukturze minerałów zależą od rodzaju minerału i warunków aktywacji, tj. rodzaju i stężenia kwasu, czasu reakcji i temperatury. Skład chemiczny pakietów znacznie wpływa na ich odporność na działanie kwasów. Pakiety trioktaedryczne rozpuszczają się szybciej niż dioktaedryczne, np. hektoryt – trioktaedryczny smektyt, rozpuszcza się szybciej niż montmorillonit, należący do smektytów dioktaedrycznych. Wzrost ilości podstawień Mg i/lub Fe za Al w smektach dioktaedrycznych powoduje wzrost szybkości rozpuszczania ich w kwasach. Natomiast niepęczniące pakiety rozpuszczają się wolniej niż pęczniące o tym samym składzie chemicznym [60].

Rozpuszczanie warstw budujących minerały ilaste zależy od stężenia kwasu. Rozpuszczanie tetraedrów krzemotlenowych ze struktury minerałów ilastych prawdopodobnie nie występuje przy niskim stężeniu kwasu (1 M), gdyż są one względnie stabilne i ich destrukcja następuje tylko przy wyższych stężeniach.
kwasu. Natomiast warstwy oktaedryczne są podatne na rozpuszczanie także przy niskich stężeniach kwasu.

Jak wynika z badań rentgenograficznych w czasie aktywacji kwasowej bentonitu najsilniej naruszona zostaje struktura montmorillonitu, a w mniejszym stopniu illitu. Natomiast struktura kaolinitu praktycznie nie ulega zmianie [60].

Przykładem produktów opartych na aktywacji kwasowej bentonitów są ziemia odbarwiająca (wybielająca), mające zastosowanie w rafinacji olei jadalnych i przemysłowych, a także używane jako katalizatory lub nośniki katalizatorów. W swoim składzie oprócz amorficznej krzemionki zawierają pewną ilość smektitu, a także kwarc, krystobalit i skalenie, które są bardziej odporne na działanie kwasów niż montmorillonit, ponieważ dla przemysłowych zastosowań nie jest konieczny całkowity rozkład tych mineralów.

Modyfikacja alkaliczna

Do aktywacji alkalicznej stosuje się roztwór NaOH. W czasie reakcji wodorotlenku z mineralami grupy smektitu następuje zastąpienie kationów międzystypakietowych przez jony Na+, a następnie rozpuszczenie warstwy tetraedrycznej [47, 77].

5.2. Badania wpływu modyfikacji termicznej i chemicznej ilów na ich właściwości fizykochemiczne i pojemność sorpcyjną

5.2.1. Modyfikacja badanych ilów

Modyfikacja termiczna

Próbki ilów „Belchatów” i „Adamów” suszono w piecu elektrycznym w temperaturze 250°C, a także prażono w temperaturze 550°C przez 5 godzin.

Modyfikacja roztworem H₂SO₄

Kwasową modyfikację ilów przeprowadzono przy użyciu 16% roztworu H₂SO₄ w temperaturze 96°C w ciągu 8 godzin przy stosunku faza stała: roztwór 1:5 [15, 95]. W celu wyeliminowania wytracania się siarczanu wapnia, magnezu i żelaza oraz bezpostaciowej krzemionki po 2 godzinach wymieniono zużyty kwas siarkowy. Po ostudzeniu próbek przemywano je wodą destylowaną do zniku reakcji na jon SO₄²⁻ (reakcja z BaCl₂) i wirowano. Następnie próbki wysuszano w temperaturze 105°C [73].

Modyfikacja roztworem NaOH

Modyfikację ilów przeprowadzono przy użyciu 5 M roztworu NaOH w temperaturze 90°C i warunkach podobnych jak opisano powyżej. Próbki po modyfikacji przemywano wodą destylowaną w celu usunięcia jonów Na+. Następnie wysuszano je w temperaturze 105°C [47, 77].
5.2.2. Właściwości ilów modyfikowanych termicznie i chemicznie

Wpływ modyfikacji termicznej na właściwości badanych ilów

Wygrzewanie badanych próbek ilów „Belchatów” i „Adamów” w temperaturze 250°C spowodowało jedynie niewielkie zmiany na dyfraktogramach, które polegały na nieznacznym przesunięciu pików dyfrakcyjnych pochodzących od smektytu w kierunku niższych wartości kąta 2θ (Rys. 5.1).

Natomiast prażenie próbek ilów w temperaturze 550°C spowodowało kolapsację – do ok. 10 Å – struktury smektytu oraz zanik piku dyfrakcyjnego pochodzącego od kaolinitu (Rys. 5.1). Kolapsacja polega na nieodwracalnym zamknięciu pakietów, sprawiając że około 80% aktywnej powierzchni minerału stała się niedostępna dla reagentów.

Rys. 5.1a. Dyfraktogramy ilu „Belchatów” (IB) aktywowanego termicznie i chemicznie

Rys. 5.1b. Dyfraktogramy ilu „Adamów” (IA) aktywowanego termicznie i chemicznie
W wyniku prażenia próbek w temperaturze 550°C zaobserwowano zmianę barwy ilów na czerwoną, co może świadczyć o krystalizacji amorficznych tlenków żelaza (oznaczonych metodą Tamma i zawartości podanej w Tab. 4.1) do hematytu. Jednak na dyfraktogramach osobnej fazy hematytu nie stwierdzono.

Analiza widm w podczerwieni pokazała, że w wyniku wygrzewania ilów w temperaturze 250°C nastąpiło zmniejszenie intensywności pasm absorpcyjnych w próbce ilu „Belchatów” przy częstościach 3623 cm\(^{-1}\) i 1654 cm\(^{-1}\), co można wytłumaczyć usunięciem cząsteczek wody związanej w strukturze smektytu (dehydrowacja) (Rys. 5.2a). Zamiany w widmie FTIR zarejestrowanym dla ilu „Adamów” w zakresie podobnej częstości charakteryzowały się mniejszą intensywnością, wynikającą ze składu mineralnego ilu (Rys. 5.2b).

Rys. 5.2a. Widma FTIR dla ilu „Belchatów” (IB) aktywowanego termicznie i chemicznie

Rys. 5.2b. Widmo FTIR dla ilu „Adamów” (IA) aktywowanego termicznie i chemicznie
Natomiast w wyniku prażenia próbek ilów w temperaturze 550°C nastąpił znaczny spadek intensywności pików przy częstości odpowiednio dla ilu „Belchatów” i „Adamów” 3623 cm⁻¹ (3631 cm⁻¹), 3421 cm⁻¹ (3417 cm⁻¹), 1654 cm⁻¹ (1668 cm⁻¹) i 696 cm⁻¹, co związane było z usunięciem wody zarówno cząstecz-kowej, jak i w postaci grup hydroksylowych.

Nastąpił również zanik piku przy częstości 921 cm⁻¹ (917 cm⁻¹) świadczącego o destrukcji warstwy oktaedrycznej, w tym o rozpadzie struktury kaolinitu. Ponadto nastąpiło zmniejszenie intensywności piku przy częstości 536 cm⁻¹ związane z obecnością grup Si-O-Al (Rys. 5.2b).

Na podstawie wyników badań porozymetrycznych stwierdzono, iż usunięcie wody w temperaturze 250°C i 550°C z próbki ilów „Belchatów” spowodowało spadek gęstości objętościowej odpowiednio o 12 i 43% oraz wzrost porowatości do wartości 0,1113 i 0,1707. Natomiast dla ilu „Adamów” wzrost porowatości w obu temperaturach był większy i wynosił odpowiednio 0,1843 i 0,4042. Nastąpiła również zmiana struktury porów w obu ilach i blisko połowa porów stała się dostępna dla wody (d > 0,2 μm) (Tab. 5.1).

Tabela 5.1. Właściwości fizyczne ilów po modyfikacji temperaturowej i chemicznej

<table>
<thead>
<tr>
<th>Próbka</th>
<th>Gęstość objętościowa ρ [kg/m³]</th>
<th>Gęstość szkieletu gruntuowego ρ [kg/m³]</th>
<th>Średnia średnica porów d [μm]</th>
<th>Porowatość n</th>
<th>Powierzchnia właściwa SSA [m²/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n₉ < 300 μm</td>
<td>n₉ > 0,2 μm</td>
</tr>
<tr>
<td>II B</td>
<td>1,9435</td>
<td>2,0859</td>
<td>0,0186</td>
<td>0,0682</td>
<td>0,0128</td>
</tr>
<tr>
<td>II B 250°C</td>
<td>1,7022</td>
<td>1,8321</td>
<td>0,0322</td>
<td>0,1113</td>
<td>0,0532</td>
</tr>
<tr>
<td>II B 550°C</td>
<td>1,1005</td>
<td>1,3536</td>
<td>0,0553</td>
<td>0,1707</td>
<td>0,0689</td>
</tr>
<tr>
<td>II B+H₂SO₄</td>
<td>0,8493</td>
<td>1,4818</td>
<td>2,1068</td>
<td>0,4268</td>
<td>0,4011</td>
</tr>
<tr>
<td>II B+NaOH</td>
<td>0,8036</td>
<td>1,7231</td>
<td>0,6362</td>
<td>0,5334</td>
<td>0,4821</td>
</tr>
<tr>
<td>II A</td>
<td>2,1032</td>
<td>2,5023</td>
<td>0,0231</td>
<td>0,0823</td>
<td>0,0211</td>
</tr>
<tr>
<td>II A 250°C</td>
<td>1,8346</td>
<td>2,3421</td>
<td>0,0381</td>
<td>0,1843</td>
<td>0,0923</td>
</tr>
<tr>
<td>II A 550°C</td>
<td>1,2102</td>
<td>2,0330</td>
<td>6,7546</td>
<td>0,4042</td>
<td>0,1872</td>
</tr>
<tr>
<td>II A+H₂SO₄</td>
<td>1,0600</td>
<td>2,4300</td>
<td>2,7638</td>
<td>0,5638</td>
<td>0,5512</td>
</tr>
<tr>
<td>II A+NaOH</td>
<td>1,0503</td>
<td>2,0210</td>
<td>0,9005</td>
<td>0,4803</td>
<td>0,4007</td>
</tr>
</tbody>
</table>

Wygrzewanie próbek w temperaturze 250°C spowodowało również wzrost zarówno powierzchni właściwej całkowitej, jak i zewnętrznej. Natomiast w wyniku prażenia ilów w temperaturze 550°C nastąpiło zmniejszenie powierzchni zarówno zewnętrznej, jak i całkowitej, a ich wielkości praktycznie nie różniły się między sobą. Potwierdza to kolapsację struktury smektytu, brak dostępności przestrzeni międzypakietowych dla wody i innych reagentów i oznacza, że aktywny udział w sorpcji zanieczyszczeń na ilach modyfikowanych w ten sposób...
będzie brała jedynie powierzchnia zewnętrzna ziarn smektytów budujących te iły (Tab. 5.1).

Wygrzewanie próbek iłów w temperaturze 250°C spowodowało niewielkie zmiany w wartościach pH – rzędu dziesiątych części jednostki i nie miało wpływu na wartość punktu izoelektrycznego wyrażonego poprzez pH_{PZC}. Natomiast w wyniku kalcynacji próbek iłów w temperaturze 550°C nastąpił spadek pH odpowiednio do wartości 6,98 dla iłu „Belchatów” i 6,88 – dla iłu „Adamów” a także wartości pH_{PZC} – odpowiednio do wartości 6,20 i 5,20 (Tab. 5.2). Może to sugerować, że prażenie próbek w 550°C powoduje wzrost ilości centrów kwasowych typu Lewisa [96]. Inną przyczyną zmniejszenia wartości pH mogła być krystalizacja uwodnionych tlenków żelaza.

W czasie ogrzewania próbek iłów nastąpił również spadek CEC o 26% dla iłu „Belchatów” i o 13,66 – dla iłu „Adamów” (Tab. 5.2).

Tabela 5.2. Właściwości fizykochemiczne iłów naturalnych i modyfikowanych

<table>
<thead>
<tr>
<th></th>
<th>II naturalny</th>
<th>+250°C</th>
<th>+550°C</th>
<th>+H₂SO₄</th>
<th>+NaOH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II „Belchatów”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7,95</td>
<td>7,83</td>
<td>6,98</td>
<td>3,39</td>
<td>10,28</td>
</tr>
<tr>
<td>pH_{PZC}</td>
<td>7,42</td>
<td>7,20</td>
<td>6,20</td>
<td>3,22</td>
<td>7,80</td>
</tr>
<tr>
<td>CEC (cmol./kg)</td>
<td>82,39</td>
<td>80,40</td>
<td>62,80</td>
<td>78,55</td>
<td>96,57</td>
</tr>
<tr>
<td></td>
<td>II „Adamów”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7,83</td>
<td>7,57</td>
<td>6,88</td>
<td>3,29</td>
<td>9,95</td>
</tr>
<tr>
<td>pH_{PZC}</td>
<td>6,95</td>
<td>6,54</td>
<td>5,20</td>
<td>3,05</td>
<td>7,95</td>
</tr>
<tr>
<td>CEC (cmol./kg)</td>
<td>31,58</td>
<td>29,05</td>
<td>24,10</td>
<td>27,98</td>
<td>27,39</td>
</tr>
</tbody>
</table>

W składzie chemicznym nie nastąpiły istotne zmiany, a te obserwowane związane były z dehydratacją i dehydroksylacją uwodnionych mineralów (Tab. 5.3). By lepiej zobrazować zmiany zachodzące podczas modyfikacji, wyliczono współczynnik będący stosunkiem zawartości krzemionki do tlenku glinu. Dla naturalnych iłów „Belchatów” i „Adamów” współczynnik ten wynosi odpowiednio 3,66 i 4,74, a aktywacja temperaturowa nie spowodowała istotnych zmian w wartościach tego współczynnika.

Wpływ modyfikacji chemicznej na właściwości badanych iłów

Analiza dyfraktogramów iłów modyfikowanych roztworem kwasu siarkowego pokazała, że nastąpiło wyraźne zmniejszenie i rozmycie pików podstawowych smektytu, wskazujące na zmniejszenie obszarów uporzakowania. W próbie iłu „Belchatów” nastąpił zanik piku pochodzącego od kalcytu (d₀₀₁ 3,03 Å). W wyniku modyfikacji iłu „Adamów” na dyfraktogramie uwidocznił się pik pochodzący od illitu (d₀₀₁ 10 Å). Obserwowane zmiany świadczą o tym, że aktywacja kwasowa objęła jedynie minerał smektowy. Ponadto
kwas H₂SO₄ miał znacznie mniejszy wpływ destrukcyjny na il „Belchatów” niż na il „Adamów”, ponieważ il ten zbudowany był ze znacznie większych krystalitów oraz miał wyższy stopień uporządkowania struktury (Rys. 5.1).

Analiza widma w podczerwieni próbki „Belchatów”, aktywowanej kwasem siarkowym na gorąco, pokazała całkowity zanik piku przy częstości 873 cm⁻¹ oraz znaczy spadek intensywności pików przy częstości 921 cm⁻¹ oraz 536 cm⁻¹ wynikający z drgań ugrupowań odpowiednio: AlFeOH i AlAlOH. Zmiany te świadczą o rozkładzie warstwy oktaedrycznej, przy czym kationy żelaza o mniejszym potencjale jonowym jako słabiej wiązane w strukturze smektitytu, usuwane są łatwiej od kationów glinu, które, mając wysoki potencjał jonowy, tworzą najsilniejsze wiązania z atomami tlenu i grupami -OH w strukturze [96]. W wyniku działania kwasu nastąpił także spadek intensywności drgań przy częstości 1054 cm⁻¹ i 474 cm⁻¹ związany z degradacją warstw tetraedrycznych (Rys. 5.1). Na skutek modyfikacji kwasowej nastąpił także zanik piku o częstości 1448 cm⁻¹ pochodzący od kalcytu w wyniku reakcji chemicznej:

\[
\text{CaCO}_3 + \text{H}_2\text{SO}_4 \rightarrow \text{CaSO}_4 \downarrow + \text{CO}_2 \uparrow + \text{H}_2\text{O}.
\]

Wymiana zużytego kwasu siarkowego w trakcie modyfikacji spowodowała, że nie nastąpiło wytrącanie siarczanu wapnia.

Dla ilu „Adamów” podobne zmiany zachodziły odpowiednio przy częstościach 917, 536, 1054 i 474 cm⁻¹.

W wyniku aktywacji kwasowej nastąpił 6-krotny wzrost porowatości ilu „Belchatów” do wartości 0,42 i 7-krotny wzrost porowatości ilu „Adamów” do wartości 0,56. Niewielka różnica między porowatością otwartą i aktywną świad-

| Próbka | SiO₂ | Al₂O₃ | Fe₂O₃ | CaO | MgO | Na₂O | K₂O | TIC | \(
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>II B</td>
<td>55,81</td>
<td>15,25</td>
<td>6,45</td>
<td>2,82</td>
<td>1,74</td>
<td>0,042</td>
<td>0,566</td>
<td>1,08</td>
<td>3,66</td>
</tr>
<tr>
<td>II B 250°C</td>
<td>56,65</td>
<td>16,57</td>
<td>7,65</td>
<td>3,23</td>
<td>2,32</td>
<td>1,11</td>
<td>1,321</td>
<td>1,16</td>
<td>3,42</td>
</tr>
<tr>
<td>II B 550°C</td>
<td>57,69</td>
<td>17,12</td>
<td>9,87</td>
<td>5,98</td>
<td>3,87</td>
<td>3,11</td>
<td>4,65</td>
<td>1,22</td>
<td>3,37</td>
</tr>
<tr>
<td>II B+H₂SO₄</td>
<td>92,11</td>
<td>5,34</td>
<td>0,34</td>
<td>0,56</td>
<td>0,67</td>
<td>0,011</td>
<td>0,21</td>
<td><0,02</td>
<td>17,25</td>
</tr>
<tr>
<td>II B+NaOH</td>
<td>32,11</td>
<td>40,17</td>
<td>1,11</td>
<td>2,23</td>
<td>2,94</td>
<td>20,63</td>
<td>0,78</td>
<td>0,70</td>
<td>0,82</td>
</tr>
<tr>
<td>II A</td>
<td>64,70</td>
<td>13,65</td>
<td>4,37</td>
<td>0,99</td>
<td>1,37</td>
<td>0,109</td>
<td>1,49</td>
<td><0,02</td>
<td>4,74</td>
</tr>
<tr>
<td>II A 250°C</td>
<td>65,52</td>
<td>14,36</td>
<td>5,18</td>
<td>1,81</td>
<td>2,11</td>
<td>0,921</td>
<td>2,12</td>
<td><0,02</td>
<td>4,56</td>
</tr>
<tr>
<td>II A 550°C</td>
<td>66,81</td>
<td>15,54</td>
<td>6,43</td>
<td>2,85</td>
<td>2,52</td>
<td>1,982</td>
<td>3,52</td>
<td><0,02</td>
<td>4,30</td>
</tr>
<tr>
<td>II A+H₂SO₄</td>
<td>94,21</td>
<td>4,76</td>
<td>0,16</td>
<td>0,12</td>
<td>0,41</td>
<td>0,21</td>
<td>0,26</td>
<td><0,02</td>
<td>19,79</td>
</tr>
<tr>
<td>II A+NaOH</td>
<td>37,12</td>
<td>23,12</td>
<td>6,11</td>
<td>4,74</td>
<td>3,21</td>
<td>22,10</td>
<td>4,42</td>
<td><0,02</td>
<td>1,61</td>
</tr>
</tbody>
</table>
czy, iż w wyniku aktywacji praktycznie wszystkie pory były dostępne dla wody (Tab. 5.1).

Stwierdzono również wzrost wielkości powierzchni zewnętrznej iłu „Belchatów” o 87% i „Adamów” o 64% w stosunku do próbki naturalnej przy praktycznie niezmienionej powierzchni całkowitej (Tab. 5.1).

Wysycenie komplesu sorpcyjnego jonami H⁺ spowodowało spadek pH do wartości odpowiednio 3,39 i 3,29, a punktu izoelektrycznego do wartości 3,22 i 3,05.

Jednocześnie nastąpił spadek CEC do wartości 78,55 cmol[+)kg dla iłu „Belchatów” i do 27,98 cmol[+)kg dla iłu „Adamów” (Tab. 5.2).

W wyniku działania na próbki iłów kwasem i rozpuszczenia warstw oktaedrycznych nastąpił wzrost krzemionki w próbkach. Wyliczony stosunek zawartości krzemionki do tlenku glinu wzrósł odpowiednio do wartości 17,25 i 19,79 (Tab. 5.3). Zawartość węgla nieorganicznego (TIC) poniżej granicy oznaczało potwierdza rozpuszczenie węgianu wapnia stwierdzone na podstawie widma FTIR (Rys. 5.2).

Traktowanie próbek iłów roztworem NaOH pokazało na dyfraktogramach podobne efekty strukturalne jak działanie kwasem. Jednak spadek intensywności pików był mniejszy niż w przypadku działania kwasem. Również działanie roztworu wodorotlenku sodu miało mniejszy wpływ destrukcyjny na ziarna iłu „Belchatów” niż „Adamów” (Rys. 5.1).

W wyniku modyfikacji zasadowej badanych iłów nastąpił w próbkach iłu „Belchatów” spadek intensywności pasma przy częstości 1054 cm⁻¹ i 476 cm⁻¹ pochodzących od drgań grup Si-O-Si w warstwie tetraedrycznej. Dla iłu „Adamów” zmiany te zachodziły przy częstości 1051 cm⁻¹ i 474 cm⁻¹. W próbce iłu „Belchatów” nastąpił również zanik pasma pochodzącego od kalcytu (1448 cm⁻¹) (Rys. 5.2), na skutek zachodzącej reakcji chemicznej:

\[\text{CaCO}_3 + 2\text{NaOH} \rightarrow \text{Na}_2\text{CO}_3 + \text{CaO} \downarrow + \text{H}_2\text{O} \]

Aktywacja zasadowa spowodowała wzrost porowatości obu iłów do wartości 0,53 i 0,48, tj. odpowiednio 8 i 6-krotnie (Tab. 5.1). Jednocześnie nastąpił wzrost powierzchni całkowitej i zewnętrznjej iłu „Belchatów”. Natomiast dla iłu „Adamów” obserwowano zmniejszenie powierzchni całkowitej przy praktycznie niezmienionej powierzchni zewnętrznej (Tab. 5.2).

W wyniku działania wodorotlenkiem sodu na próbki iłu nastąpił wzrost pH odpowiednio do 10,28 i 9,95. Punkt izoelektryczny wynosił odpowiednio pH 7,80 i 7,95.

Destrukcji warstw tetraedrycznych towarzyszył wzrost CEC do wartości 96,57 cmol[+)kg dla iłu „Belchatów” i 27,39 cmol[+)kg dla iłu „Adamów”.

W wyniku rozpuszczenia warstw tetraedrycznych i wolnej krzemionki nastąpił spadek współczynnika będącego stosunkiem zawartości krzemionki do tlenku glinu do wartości 0,82 i 1,61 (Tab. 5.3).
Podsumowując wpływ modyfikacji ilów na ich właściwości fizykochemiczne stwierdzono, iż:

– w wyniku wygrzewania ilów w temperaturze 250°C nastąpiła dehydratacja smektytów, której towarzyszył wzrost porowatości otwartej oraz aktywnej, a także wzrost powierzchni właściwej całkowitej i zewnętrznej,

– wzrost temperatury ogrzewania próbek ilów do 550°C spowodował uwalnianie wody zarówno związanej ze strukturą mineralfi, jak i jej towarzyszącego wzrostu porowatości otwartej oraz aktywnej, a także wzrost powierzchni właściwej w wyniku kolapsacji struktur smektytów. Aktywacja temperaturowa nie spowodowała znacznych zmian właściwości chemicznych ilów,

– w wyniku aktywacji kwasowej, przy użyciu kwasu siarkowego, nastąpiła degradacja minerału smektetywowego polegająca na zastąpieniu wymienionych kationów wapnia przez jony hydroniowe, wzrost centrów kwasowych i rozpuszczenie przede wszystkim warstw oktaedrycznych. Nastąpił znaczny wzrost porowatości i powierzchni właściwej. Wyparcie jonów wapnia z kompleksu sorpcyjnego ilów i zastąpienie ich przez jony hydroniowe spowodowało znaczny spadek pH w wodnych zawiesinach, a jednocześnie wzrost potencjalnej pojemności wymiany kationów,

– działanie 5 M roztworu NaOH spowodowało wysyczenie kompleksu sorpcyjnego kationami Na+, a także rozpuszczanie warstw tetraedrycznych. W wyniku aktywacji zasadowej nastąpił również wzrost porowatości i powierzchni właściwej a wodne zawiesiny ilów miały odczyn zasadowy.

W wyniku prażenia ilów w temperaturze 550°C nastąpiło zmniejszenie powierzchni właściwej zewnętrznej i całkowitej (Rys. 5.3), a wstępne badania nad ich pojemnością sorpcyjną w stosunku do barwników wykazały, że ten rodzaj modyfikacji miał nieistotny wpływ na zdolność sorpcyjne ilów. Dlatego też zrezygnowano w tej monografii z przedstawiania i omówienia wyników badań sorpcji barwników przez ily modyfikowane termicznie w 550°C.

Rys. 5.3. Wpływ modyfikacji ilów na ich porowatość i powierzchnię właściwą
5.2.3. Wpływ modyfikacji ilów na ich zdolności sorpcyjne

Badania pojemności sorpcyjnej ilów modyfikowanych temperaturowo i chemicznie przeprowadzono metodą „batch” opisaną w Rozdz. 4.3.3 przy takich samych parametrach doświadczenia jak dla ilów naturalnych. Wyniki badań sorpcji barwników oraz stopnia retencji na ilach modyfikowanych przedstawiono na wykresach w układzie \(S = f(C_{eq}) \) i \(R = f(C_0) \) dla poszczególnych barwników, co pozwoliło na określenie wpływu modyfikacji ilu na jego pojemność sorpcyjną w stosunku do poszczególnych barwników. W celu pokazania wpływu rodzaju modyfikacji ilu na ilość wiązanych barwników na wykresach podano także izotermę sorpcji danego barwnika przez il naturalny.

Do określenia wpływu typu modyfikacji ilów na ich skuteczność do usuwania poszczególnych barwników z roztworów, posługując się programem STATISTICA ver. 7.0, przeprowadzono test statystyczny polegający na porównaniu, pojemności sorpcyjnej i ilów naturalnych i modyfikowanych w stosunku do poszczególnych barwników, parami na poziomie ufności 95%. Zmienności niezależnej była sorpcja barwników przez ily naturalne w warunkach równowagowych, natomiast zmienności zależnej sorpcja tych samych barwników przez ily aktywowane. Test ten pozwolił odpowiedzieć na pytanie, czy zastosowane modyfikacje ilów w sposób statystycznie istotny wpłynęły na ich zdolności sorpcyjne w stosunku do wybranych barwników. Przykładowe wyniki testu zestawiono dla sorpcji barwników reaktywnych w Tab. 5.4.

Wpływ modyfikacji ilów na zdolności sorpcyjne w stosunku do barwników reaktywnych

Przeprowadzone badania sorpcji barwników na ilach modyfikowanych termicznie w 250°C wskazały, że powinowactwo barwników reaktywnych do powierzchni ilów zależało od budowy ich cząsteczek.

Wygrzewanie ilu „Belchatów” w temperaturze 250°C spowodowało wzrost jego pojemności sorpcyjnej w stosunku do trzech spośród pięciu badanych barwników reaktywnych w całym zakresie stężeń początkowych, maksymalnie do:
- RB-81 – 3766 mg/kg, tj. o 31,22%,
- RR-198 – 3316 mg/kg, tj. o 13,56%,
- RY-42 – 2580 mg/kg, tj. o 32,72%.

Natomiast barwnik RBk-5 wiązany był przez il „Belchatów 250°C” maksymalnie do 3888 mg/kg, czyli w ilości mniejszej o 12,43% niż przez il o naturalnym kompleksie sorpcyjnym. Barwnik RB-19 w zakresie stężeń początkowych 1–500 mg/dm³ wiązał się przez il modyfikowany termicznie w podobnych ilościach jak przez il naturalny, natomiast przy stężeniu maksymalnym równym 1000 mg/dm³ barwnik ten wiązoł się w ilościach mniejszych o 3,66% niż przez il o naturalnym kompleksie sorpcyjnym (w ilości 17964 mg/kg) (Rys. 5.4a).

Również wygrzewanie ilu mieszanopakietowego „Adamów” w temperaturze 250°C przyczyniło się do wzrostu jego pojemności sorpcyjnej w stosunku do trzech barwników reaktywnych:
– RB-81 do maksymalnej ilości równej 8400 mg/kg, tj. o 425%,
– RBk-5 do 3630 mg/kg, tj. o 45,52%,
– RY-42 do 5480 mg/kg, tj. o 7,45%.
BR-198 był w całym zakresie stężeń wiązany przez il modyfikowany w ilościach zbliżonych do tych wiązanych przez il naturalny. Temperaturowa modyfikacja iłu „Adamów” spowodowała, iż barwnik RB-19 w całym zakresie stosowanych stężeń był wiązany w mniejszych ilościach, maksymalnie do 9470 mg/kg, tj. o 27,57% mniej niż przez il naturalny (Rys. 5.4a).

Sorpcja barwników reaktywnych na ilach modyfikowanych termicznie przebiegała przy zbliżonym odczynie zawiesin.

Zastosowanie testu statystycznego mającego na celu porównanie wartości sorpcji barwników przez il naturalny i modyfikowany pokazało, iż modyfikacja temperaturowa w 250°C w sposób istotny wpłynęła na ilość wiązanych barwników RB-81, RBk-5 i RY-42 oraz RR-198 przez oba ily oraz barwnika RB-19 przez il „Adamów”. Natomiast wpływ modyfikacji był nieistotny w przypadku sorpcji barwnika RB-19 przez il „Belchatów” (Tab. 5.4).

Aktywacja kwasowa ilów „Belchatów” i „Adamów” spowodowała znaczący wzrost ich pojemności sorpcyjnych w stosunku do barwników reaktywnych: RB-81, RR-198, RBk-5 i RY-42. Pojemność sorpcyjna aktywowanych ilów wzrosła odpowiednio:
– w stosunku do RB-81 do 9860 mg/kg, tj. o 243% i do 5200 mg/kg, tj. o 225%,
– w stosunku do RR-198 do 10320 mg/kg, tj. o 253% i do 6408 mg/kg, tj. o 53,7%,
– w stosunku do RBk-5 do 5900 mg/kg, tj. o 81% i do 7090 mg/kg, tj. o 184%,
– w stosunku do RY-42 do 7070 mg/kg, tj. o 262% i do 8672 mg/kg, tj. o 72%.

Natomiast w stosunku do barwnika RB-19 obserwowano spadek pojemności sorpcyjnej ilów IB i IA odpowiednio do wartości 5900 mg/kg, tj. o 68% i do wartości 3494 mg/kg, tj. o 73% (Rys. 5.4a).

Przeprowadzony tekst statystyczny wykazał, iż w wyniku modyfikacji kwasowej nastąpiła istotna zmiana pojemności sorpcyjnej ilów w stosunku do barwników reaktywnych (Tab. 5.4).

Również w wyniku aktywacji zasadowej ilu „Belchatów” nastąpił istotny wzrost jego maksymalnej pojemności sorpcyjnej w stosunku do następujących barwników reaktywnych:
– RR-198 – do 5060 mg/kg – wzrost o 73,3%,
– RBk-5 – do 6600 mg/kg – wzrost o 48,6%,
– RB-19 – do 19864 mg/kg – wzrost o 6,52%,
– RR-42 – do 8404 mg/kg – wzrost o 332%.

Natomiast w stosunku do RB-81 maksymalna pojemność aktywowanego ilu zmalała o 7,59% do wartości 2652 mg/kg (Rys. 5.4a).
Również modyfikacja zasadowa ił „Adamów” miała istotny wpływ na jego pojemność sorpcyjną w stosunku do barwników reaktywnych, tj.:
- RB-81 – wzrost ilości zasorbowanego barwnika maksymalnie do 6940 mg/kg, tj. o 333%,
- RBk-5 – do 7772 mg/kg – wzrost o 211%.

Natomiast trzy pozostałe barwniki reaktywne w całym zakresie stężeń początkowych wiązane były w znacznie mniejszych ilościach niż przez il naturalny. Maksymalna pojemność sorpcyjna iłu modyfikowanego w stosunku do barwnika RR-198 wynosiła 2300 mg/kg, i była o 45% niższa niż ilu naturalnego, a w stosunku do barwnika RB-19 wynosiła 3490 mg/kg i była niższa o 56%, a RY-42 – 3490 mg/kg – a zatem niższa o 31,57%.

Il „Bełchatów”

Il „Adamów”
Rys. 5.4a. Wpływ modyfikacji ilów na ich zdolność sorpcyjną w stosunku do barwników reaktywnych

W wyniku modyfikacji chemicznej ilów oprócz zmiany maksymalnej pojemności sorpcyjnej ilów w stosunku do barwników reaktywnych, nastąpiła również zmiana stopnia retencji barwników z roztworów. W wyniku modyfikacji kwasowej nastąpił także wzrost stopnia retencji barwników RB-81, RR-198, RBk-5 i RY-42 z roztworu w zakresie stężeń początkowych 1–1000 mg/dm³, a w wyniku modyfikacji zasadowej – barwników RR-198, RBk-5 i RY-42. Natomiast stopień retencji barwników reaktywnych z roztworów z wykorzystaniem ilów modyfikowanych temperaturowo był podobny jak dla ilów naturalnych. Przykładowe krzywe dla ilu „Bełchatów” przedstawiono na Rys. 5.4b.
Na podstawie przeprowadzonych badań sorpcji wybranych barwników reaktywnych na ilach modyfikowanych termicznie i chemicznie stwierdzono, iż w niektórych przypadkach oprócz zmiany w ilości sorbowanego barwnika nastąpiła również zmiana typu izoterm sorpcji. W wyniku modyfikacji temperaturowej nastąpiła zmiana typu izoterm sorpcji barwnika RB-81 na ziarnach ilu „Belchatów” z S na L. Modyfikacja kwasowa spowodowała oprócz wzrostu ilości wiązanego barwnika również zmianę typu izoterm sorpcji barwników RB-81, RR-198, RBk-5, RY-42 na obu ilach z S na L oraz RB-19 na ziarnach ilu „Belchatów” z H na S i na ziarnach ilu „Adamów” z L na S.

Natomiast w wyniku modyfikacji zasadowej nastąpiła zmiana typu izoterm sorpcji barwnika RR-198, RBk-5, RY-42 na ziarnach ilu „Belchatów” z S na L i sorpcji barwnika RR-198 i RBk-5 na ziarnach ilu „Adamów”. Zmiana kształtu izoterm S na L sugeruje, że w wyniku aktywacji ilów oprócz wzrostu ilości sorbowanego barwnika nastąpił również wzrost siły oddziaływania barwnika z centrami sorpcyjnymi ilów.
Tabela 5.4. Wyniki przeprowadzonego testu statystycznego dla sorpcji barwników reaktywnych – porównanie wartości dwóch próbek parami, poziom ufności 95%

<table>
<thead>
<tr>
<th>BARWNIKI REAKTYWNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barwnik</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>IB 250°C</td>
</tr>
<tr>
<td>IB NaOH</td>
</tr>
<tr>
<td>IB 250°C</td>
</tr>
<tr>
<td>IB NaOH</td>
</tr>
<tr>
<td>IB 250°C</td>
</tr>
<tr>
<td>IB NaOH</td>
</tr>
<tr>
<td>Barwnik</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>IB 250°C</td>
</tr>
<tr>
<td>IB</td>
</tr>
<tr>
<td>IB 250°C</td>
</tr>
<tr>
<td>RY-42</td>
</tr>
</tbody>
</table>

*) na szaro zaznaczono brak statystycznie istotnych różnic między pojemnością sorpcyjną ilów naturalnych i modyfikowanych, t_{exp} – wartość krytyczna rozkładu t-Studenta dla określonego poziomu ufności i odpowiedniej liczby swobody, t_{kryt} – wartość eksperymentalna statystyki testu (porównanie wartości dwóch serii parami, P – poziom ufności testu
Wpływ modyfikacji ilów na ich zdolności sorpcyjne w stosunku do barwników bezpośrednich

Wygrzewanie ilów „Belchatów” w temperaturze 250°C spowodowało niewielki wzrost jego pojemności sorpcyjnej w stosunku do barwnika DY-142 o 2,55% (do 18846 mg/kg) i DR-81 o 4,53% (do 17770 mg/kg). Wpływ modyfikacji termicznej ilów „Adamów” był wyższy, a jego zdolność sorpcyjna do obu barwników wzrosła odpowiednio o 7% i 11,86% do wartości 16050 mg/kg i 17600 mg/kg.

Największy wzrost pojemności sorpcyjnej ilów w wyniku ich modyfikacji termicznej i ilu „Bełchatów” w temperaturze 250°C spowodował niewielki wzrost jego pojemności sorpcyjnej w stosunku do barwnika DY-142 o 2,55% (do 18846 mg/kg) i DR-81 o 4,53% (do 17770 mg/kg). Wpływ modyfikacji termicznej iłów „Adamów” był wyższy, a jego zdolność sorpcyjna do obu barwników wzrosła odpowiednio o 7% i 11,86% do wartości 16050 mg/kg i 17600 mg/kg.

Największy wzrost pojemności sorpcyjnej ilów w wyniku ich modyfikacji termicznej zaobserwowano dla ilu „Belchatów” w stosunku do barwnika DB-74 – o 24,45% do wartości 5848 mg/kg. Dla modyfikowanego termicznie ilu „Adamów” wzrost jego zdolności sorpcyjnej dla barwnika DB-74 był wyższy tylko o 8,32% i wynosił 5600 mg/kg (Rys. 5.5a).

Wyniki przeprowadzonego testu istotności pokazały, iż modyfikacja termiczna miała statystycznie istotny wpływ na pojemność sorpcyjną ilu „Belchatów” w stosunku do wszystkich badanych barwników bezpośrednich, natomiast wpływ tej modyfikacji na sorpcję barwników na ziarnach ilu „Adamów” był statystycznie nieistotny.

W wyniku aktywacji kwasowej nastąpił również niewielki wzrost pojemności sorpcyjnej ilów „Belchatów” w stosunku do dwóch barwników bezpośrednich:
- DY-142 – maksymalnie do 19768 mg/kg, tj. o 7,56%,
- DR-81 – 18336 mg/kg, tj. o 8,29%.

Natomiast stwierdzono znaczny wzrost sorpcji barwnika DB-74 w całym zakresie stężenia, maksymalnie o 226% do wartości 15324 mg/kg.

Przeprowadzony test statystyczny wykazał, że w wyniku aktywacji kwasowej nastąpiły statystycznie istotne zmiany pojemności sorpcyjnej ilu „Belchatów”.

Natomiast w wyniku aktywacji kwasowej ilów „Adamów” nastąpił wzrost jego pojemności sorpcyjnej jedynie w stosunku do barwnika DY-142 maksymalnie do 19088 mg/kg. Natomiast ilość wiązanych barwników DR-81 i DB-74 przez modyfikowany il „Adamów” zmniejszyła się o 31,6% i 32,8% (Rys. 5.5a). Test statystyczny wykazał, że zmiany pojemności sorpcyjnej ilów były statystycznie istotne dla wszystkich badanych barwników bezpośrednich.

Spośród barwników bezpośrednich tylko jeden barwnik – DB-74 – wiązał przez zasadowo modyfikowany il „Belchatów” w większych ilościach niż przez il naturalny. Przy maksymalnym stężeniu początkowym był on wiązany w ilości 10600 mg/kg (wzrost o 125%). Pozostałe barwniki bezpośrednie wiązane były przez oba zasadowo modyfikowane iliny w znacznie mniejszych ilościach w całym zakresie stężeń początkowych. Maksymalne pojemności sorpcyjne ilów modyfikowanych zasadowo zmniejszyły się w stosunku do barwników:
- DY-142 – o 67% (do wartości 6060 mg/kg) oraz o 57,7% dla ilu „Adamów” (do wartości 6340 mg/kg),
- DR-81 – o 76% dla ilu „Belchatów” (do 4000 mg/kg) oraz o 70% dla ilu „Adamów” (do 3400 mg/kg),
– DB-74 – o 80% dla iłu „Adamów” i wynosiła 1042 mg/kg (Rys. 5.5a). Test statystyczny wykazał, iż modyfikacja zasadowa w istotny sposób wpłynęła na ilość wiązanych barwników bezpośrednich.

![Wpływ modyfikacji ilów na ich zdolności sorpcyjne w stosunku do barwników bezpośrednich](image)

Rys. 5.5a. Wpływ modyfikacji ilów na ich zdolności sorpcyjne w stosunku do barwników bezpośrednich

Modyfikacja temperaturowa i kwasowa ilów spowodowała wzrost stopnia retencji barwnika DB-74 w całym zakresie stężeń początkowych. Natomiast w wyniku modyfikacji zasadowej stopień retencji barwników DY-142 i DR-81 znacznie się zmniejszył (Rys. 5.5b).
W wyniku przeprowadzonej modyfikacji termicznej i chemicznej nastąpiła zmiana ilości wiążanych barwników, a także, w niektórych przypadkach, zmiana typu izotermy.

W wyniku modyfikacji temperaturowej ilów nastąpiła zmiana typu izotermi sorpcji barwnika DB-74 na ziarnach ilu „Belchatów” z S na L. W wyniku modyfikacji kwasowej ilów nastąpiła zmiana typu izotermi sorpcji barwnika DR-81 na ziarnach ilu „Belchatów” z S na L oraz izotermi sorpcji barwnika DY-142 na ziarnach ilu „Adamów” z L na H. Natomiast w wyniku modyfikacji zasadowej nastąpiła zmiana typu izotermi sorpcji barwnika DY-142 z H na L oraz izotermi sorpcji barwników DB-74 i DR-81 z L na S na ziarnach ilu „Adamów”.

Zmiana typu izotermi S na L sugeruje, iż w wyniku modyfikacji termicznej i kwasowej ilów oprócz wzrostu ilości sorbowanych barwników nastąpił również wzrost siły oddziaływania zasorbowanych barwników z centrami aktywnymi ilów.

Wpływ modyfikacji ilów na ich zdolności sorpcyjne w stosunku do barwników kwasowych

W wyniku modyfikacji temperaturowej w 250°C ilu „Belchatów” nastąpił wzrost w porównaniu do ilu naturalnego jego pojemności sorpcyjnej w stosunku do trzech spośród czterech barwników kwasowych, tj.:

– AR-18 – maksymalnie do 2660 mg/kg – wzrost o 23,15%,
– AG-16 – do 1030 mg/kg – wzrost o 8,56%,
– ABk-1 – do 3300 mg/kg – wzrost o 34,15%.

Natomiast barwnik AB-9 był wiązany w podobnych ilościach jak przez ił naturalny. Maksymalna pojemność sorpcyjna iłu modyfikowanego w stosunku do tego barwnika wynosiła 19822 mg/kg, a więc była wyższa niż ił naturalnego jedynie o 0,25%.

Modyfikacja temperaturowa iłu „Adamów” spowodowała wzrost jego pojemności sorpcyjnej w stosunku do barwników:
– AB-9 – maksymalnie do 18248 mg/kg,
– AG-16 – do 9792 mg/kg,
– ABk-1 – do 3400 mg/kg.

W stosunku do barwnika AR-18 obserwowano spadek pojemności sorpcyjnej maksymalnie do 1260 mg/kg (Rys. 5.6a).

Test istotności wykazał, że jedynie w przypadku barwnika AB-9 modyfikacja temperaturowa obu iłów nie wpłynęła istotnie na jego sorpcję.

Aktywacja kwasowa iłu „Belchatów” miała istotny wpływ na ilość wiązanych barwników kwasowych AR-18, AG-16 i ABk-1.

Barwnik AR-18, przy maksymalnym stężeniu początkowym w roztworze był wiązany w ilości 3070 mg/kg, a więc w ilościach większych o 42,12% niż przez ił naturalny, AG-16 – w ilości 16328 mg/kg (wzrost o 26%) i ABk-1 – w ilości 7180 mg/kg (wzrost o 192%) (Rys. 5.6a).

Natomiast modyfikacja kwasowa nie wpłynęła istotnie na zmianę pojemności sorpcyjnej iłu w stosunku do barwnika AB-9. Barwnik ten był wiązany maksymalnie w ilości 19406 mg/kg, tj. o 1,86% mniejszej niż przez ił naturalny.

Procesy fizyko-chemiczne zachodzące podczas modyfikacji kwasowej iłu „Adamów” spowodowały istotne statystycznie zmiany w jego pojemności sorpcyjnej w stosunku do barwników kwasowych.

Wzrost pojemności sorpcyjnej obserwowano w stosunku do barwników:
– AG-16 – maksymalnie do wartości 12720 mg/kg – wzrost o 56%,
– ABk-1 – do 4896 mg/kg – wzrost o 78,6%.

Natomiast spadek pojemności sorpcyjnej iłu zanotowano w stosunku do barwników:
– AR-18 – o 30% do wartości 974 mg/kg,
– AB-9 – o 22% do wartości 14274 mg/kg.

Modyfikacja zasadowa iłu „Belchatów” spowodowała wzrost jego pojemności sorpcyjnej jedynie w stosunku do barwnika ABk-1, maksymalnie do 3500 mg/kg, tj. o 42%. Pozostałe barwniki kwasowe wiązane były w znacznie mniejszych ilościach, przede wszystkim w zakresie wyższych stężeń początkowych 100–1000 mg/dm³. Przy maksymalnym stężeniu początkowym równym 1000 mg/dm³ pojemność sorpcyjna aktywowanego iłu wynosiła w stosunku do:
– AR-18 – 1276 mg/kg i była niższa od pojemności sorpcyjnej iłu naturalnego o 41%,
– AB-9 – 3768 mg/kg, spadek o 81%,
– AG-16 – 2390 mg/kg, spadek o 80%.

Podobnie w stosunku do barwników kwasowych zachowywał się aktywowany il „Adamów”, z tą różnicą, że wykazywał on wyższą pojemność sorpcyjną w stosunku do barwnika AR-18 niż il naturalny o 6,6%. Pozostałe barwniki były wiązane w mniejszych ilościach, maksymalnie:
– AB-9 – 3100 mg/kg, tj. w ilości niższej o 83%,
– AG-16 – 2056 mg/kg, tj. ilości niższej o 75%,
– ABk-1 – 2200 mg/kg, tj. ilości niższej o 20% (Rys. 5.6a).

Test statystyczny wykazał, że ilości wiązanego barwnika ABk-1 przez il „Adamów” naturalny i modyfikowany roztworem NaOH nie różniły się istotnie.

Przeprowadzone modyfikacje temperaturowa i chemiczna ilów spowodowały zmianę ilości wiązanych barwników bez zmiany typu izotermy. Tylko dla sorpcji barwnika AB-9 na ilach modyfikowanych roztworem NaOH nastąpiła zmiana typu izotermy z H na S.
Rys. 5.6a. Wpływ modyfikacji ilów „Belchatów” i „Adamów” na ich zdolności sorpcyjne w stosunku do barwników kwasowych

Analizując wpływ modyfikacji na stopień retencji barwników stwierdzono największe zmiany w usuwaniu barwników AG-16 i AB-9 przez ziarna ilu modyfikowanego zasadowo. W całym zakresie stężeń początkowych tych barwników, w roztworze obserwowano zmniejszanie stopnia retencji do poziomu 10–18%, przy czym największe zmiany obserwowano w zakresie niskich stężeń początkowych do 150 mg/dm³ (Rys. 5.6b).

Rys. 5.6b. Wpływ modyfikacji ilu „Belchatów” na stopień usuwania barwników kwasowych z roztworu
Wpływ modyfikacji ilów na zdolności sorpcyjne w stosunku do barwników kwasowych metaloorganicznych

Barwniki metalokompleksowe o charakterze kwasowym wiązane były przez il modyfikowany termicznie w większych ilościach niż przez il o naturalnym kompleksie sorpcyjnym.

Temperaturowa modyfikacja ilu „Belchatów” spowodowała wzrost jego pojemności sorpcyjnej w stosunku do obu barwników metaloorganicznych:
- AB-193 o 26.05%, maksymalnie do 2516 mg/kg,
- ABk-194 o 13.16%, maksymalnie do 8600 mg/kg.

Temperaturowa modyfikacja ilu „Adamów” przyczyniła się do wzrostu jego pojemności sorpcyjnej w stosunku do obu barwników:
- AB-193 o 22.13% do wartości 2380 mg/kg,
- ABk-194 o 8.13% do wartości 8750 mg/kg.

Przeprowadzony tekst statystyczny wykazał, że modyfikacja temperaturowa w istotny sposób wpłynęła na ich pojemność sorpcyjną w stosunku do obu barwników.

Modyfikacja kwasowa ilu „Belchatów” przyczyniła się w istotny sposób do wzrostu jego pojemności sorpcyjnej w stosunku do barwników metaloorganicznych. Dla AB-193 obserwowano wzrost sorpcji o 142% do wartości 4840 mg/kg, natomiast dla barwnika ABk-194 o 60% – do wartości 9202 mg/kg (Rys. 5.7a).
Aktywacja kwasowa iłu „Adamów” spowodowała wzrost jego pojemności sorpcyjnej w stosunku do barwnika AB-193 o 62%, do wartości 3150 mg/kg. Natomiast w stosunku do barwnika ABk-194 obserwowano spadek pojemność sorpcyjnej iłu o 3,85%, do wartości 7730 mg/kg i, jak wykazał test statystyczny, była to zmiana nieistotna.

Sorpcja barwników przez iły aktywowane kwasem odbywała się przy pH w granicach 4,2–3,5 w całym zakresie stężeń.

W wyniku modyfikacji zasadowej iłu smektytowego „Belchatów” nastąpił wzrost ilości wiązanych barwników metaloorganicznych:

– AB-193 – wzrost maksymalnie do wartości 3038 mg/kg – tj. wzrost o 52%,
– ABk-194 – wzrost do wartości 8330 mg/kg – tj. wzrost o 9,6% (Rys. 5.7a).

Modyfikacja zasadowa iłu „Adamów” przyczyniła się do wzrostu jego pojemności sorpcyjnej w stosunku do barwnika AB-193 o 27,3%, do wartości 2662 mg/kg (Rys. 5.7a). Natomiast miała ujemny wpływ na jego pojemność sorpcyjną w stosunku do barwnika ABk-194, gdyż nastąpił spadek ilości wiązanego barwnika o 75% do wartości 1954 mg/kg.

Według testu statystycznego wpływ modyfikacji zasadowej na ilość wiązanych barwników metalokompleksowych był istotny.

Sorpcja barwników na modyfikowanych iłach przebiegała w zakresie pH 8,00–9,71.

Rys. 5.7b. Wpływ modyfikacji iłu „Belchatów” na stopień usuwania barwników metaloorganicznych z roztworu
Dla sorpcji barwników kwasowych metaloorganicznych na iłach modyfikowanych nie stwierdzono zmiany typu izoterm. Uwzględniając klasyfikację izoterm Giles’a, barwniki były wiązane wg typu S.

5.2.4. Podsumowanie

W celu określenia wpływu właściwości fizyko-chemicznych na zdolności wiązania barwników przez badane iły wyznaczono i zamieszczono w Tab. 5.5. współczynniki korelacji liniowej Pearsona (przy p > 0.05) między maksymalną ilością zasorbowanych barwników a wybranymi właściwościami fizykochemicznymi (powierzchnia właściwa, porowatość, CEC) iłów naturalnych i modyfikowanych temperaturowo i chemicznie.

Wysokie wartości współczynników korelacji między sorpcją barwników a powierzchnią zewnętrzną iłów sugerują, że wiązane są one w wyniku sorpcji powierzchniowej.

Biorąc pod uwagę wpływ rodzaju modyfikacji badanych iłów na ilość wiązanych barwników i skuteczność ich usuwania, stwierdzono, że najsielniejszy wpływ miała modyfikacja kwasowa iłów związana z destrukcją warstwy oktaedrycznej mineralów ilastych i modyfikacja temperaturowa, co ilustruje poniższe zestawienie:

```
<table>
<thead>
<tr>
<th></th>
<th>IB H₂SO₄ &gt; IB 250°C &gt; IB &gt; IB NaOH</th>
<th>IA 250°C &gt; IA NaOH &gt; IA H₂SO₄ &gt; IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB-81</td>
<td>IB H₂SO₄ &gt; IB NaOH &gt; IB 250°C &gt; IB</td>
<td>IA 250°C &gt; IA NaOH &gt; IA H₂SO₄ &gt; IA</td>
</tr>
<tr>
<td>RR-198</td>
<td>IB H₂SO₄ &gt; IB NaOH &gt; IB 250°C &gt; IB</td>
<td>IA 250°C &gt; IA NaOH &gt; IA H₂SO₄ &gt; IA</td>
</tr>
<tr>
<td>RBk-5</td>
<td>IB H₂SO₄ &gt; IB NaOH &gt; IB &gt; IB 250°C</td>
<td>IA H₂SO₄ &gt; IA 250°C &gt; IA NaOH &gt; IA</td>
</tr>
<tr>
<td>RB-19</td>
<td>IB NaOH &gt; IB &gt; IB 250°C &gt; IB H₂SO₄</td>
<td>IA NaOH &gt; IA H₂SO₄ &gt; IA 250°C &gt; IA</td>
</tr>
<tr>
<td>RY-42</td>
<td>IB NaOH &gt; IB H₂SO₄ &gt; IB 250°C &gt; IB</td>
<td>IA H₂SO₄ &gt; IA 250°C &gt; IA NaOH &gt; IA</td>
</tr>
<tr>
<td>DY-142</td>
<td>IB H₂SO₄ &gt; IB 250°C &gt; IB &gt; IB NaOH</td>
<td>IA H₂SO₄ &gt; IA 250°C &gt; IA NaOH &gt; IA</td>
</tr>
</tbody>
</table>
```
Na wpływ aktywacji kwasowej bentonitów na wielkość sorpcji barwników kwasowych, w tym AR-18, AB-193, uwagę zwrócili Özcan i Özcan [73]. Również Lin ze współpracownikami [58] obserwował znaczny – 5-krotny wzrost pojemności sorpcyjnej modyfikowanego kwasowo montmorillonitu w stosunku do barwnika ABk-1. Wzrost sorpcji tłumaczyli wzrostem mikroporów oraz powierzchni właściwej w wyniku przeprowadzonej aktywacji.

Badania sorpcji barwnika RB-19 na zasadowo modyfikowanym bentonicie prowadzone przez Özcan’a [72] wskazują, iż zasadowa aktywacja przyczyniła się do zmniejszenia pojemności sorpcyjnej w stosunku do tego barwnika. Zatem uzyskali oni podobne zależności, jakie zaobserwowano, badając sorpcję na zasadowo aktywowanym ile „Adamów” i odmienne w porównaniu do ilu „Belchatów”.

Jednocześnie wyniki przeprowadzonych badań pokazują, że ilość wiązanych barwników zależy zarówno od rodzaju barwnika, jego budowy chemicznej, ilości i rodzaju grup funkcyjnych, jak i właściwości fizykochemicznych ilów, w tym ich zewnętrznej powierzchni właściwej.
Tabela 5.5. Współczynnik korelacji liniowej Pearsona między maksymalną pojemnością sorpcyjną ilów a ich wybranymi właściwościami fizykochemicznymi

<table>
<thead>
<tr>
<th></th>
<th>RB-81</th>
<th>RR-198</th>
<th>RBk-5</th>
<th>RB-19</th>
<th>RY-42</th>
<th>DY-142</th>
<th>DR-81</th>
<th>DB-74</th>
<th>AR-18</th>
<th>AB-9</th>
<th>AG-16</th>
<th>ABk-1</th>
<th>AB-193</th>
<th>ABk-194</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA H₂O</td>
<td>-0,2646</td>
<td>0,2304</td>
<td>0,4220</td>
<td>-0,4369</td>
<td>0,1657</td>
<td>-0,0737</td>
<td>0,1903</td>
<td>0,4199</td>
<td>0,3877</td>
<td>-0,0657</td>
<td>0,0449</td>
<td>0,2170</td>
<td>0,2769</td>
<td>0,4995</td>
</tr>
<tr>
<td>SSA N₂</td>
<td>0,6730</td>
<td>0,7044</td>
<td>0,8761</td>
<td>0,6554</td>
<td>0,7191</td>
<td>0,7547</td>
<td>0,3376</td>
<td>0,6578</td>
<td>0,7062</td>
<td>0,3011</td>
<td>0,8637</td>
<td>0,8174</td>
<td>0,8212</td>
<td>0,6905</td>
</tr>
<tr>
<td>nₐ</td>
<td>0,3230</td>
<td>0,4841</td>
<td>0,8761</td>
<td>-0,5656</td>
<td>0,7530</td>
<td>-0,3517</td>
<td>-0,5961</td>
<td>0,2181</td>
<td>-0,2510</td>
<td>-0,6467</td>
<td>-0,2227</td>
<td>0,4836</td>
<td>0,6493</td>
<td>-0,2383</td>
</tr>
<tr>
<td>n₀</td>
<td>0,3438</td>
<td>0,4294</td>
<td>0,8694</td>
<td>-0,5691</td>
<td>0,7322</td>
<td>-0,4250</td>
<td>-0,6486</td>
<td>0,1829</td>
<td>-0,2906</td>
<td>-0,7022</td>
<td>-0,2980</td>
<td>0,4277</td>
<td>0,6158</td>
<td>-0,2946</td>
</tr>
<tr>
<td>CEC</td>
<td>-0,2276</td>
<td>0,1960</td>
<td>0,1257</td>
<td>0,6768</td>
<td>-0,0593</td>
<td>0,0280</td>
<td>0,3621</td>
<td>0,4355</td>
<td>0,3942</td>
<td>0,0477</td>
<td>0,1553</td>
<td>0,1999</td>
<td>0,2753</td>
<td>0,4233</td>
</tr>
</tbody>
</table>
6. Metody szacowania parametrów sorpcji

6.1. Wprowadzenie

Znajomość parametrów sorpcji ma istotne znaczenie dla wiarygodności tworzonych modeli wiązania/uwalniania zanieczyszczeń oraz związanych z tym wyników symulacji prognoz. O zachowaniu się zanieczyszczeń o charakterze jonowym i cząsteczkowym dowiadujących się w wyniku działalności człowieka do środowiska wodno-glebowo-gruntu zdecydują dwie przeciwnie grupy zjawisk. Pierwsza grupa obejmuje procesy wiązania i wymiany jonowej przez kompleks sorpcyjny, wytrącanie związków nierozpuszczalnych, reakcję redox, hydrozę, krystalizację oraz akumulację biologiczną. Do drugiej grupy należą procesy zwiększające mobilność zanieczyszczeń, a więc desorpcja, rozpuszczalność oraz mineralizacja związków organicznych. Intensywność ich wiązania i uwalniania zależy od fizycznych i chemicznych warunków układu faza stała–roztwór, tj.: składu fazowego fazy stałej (zawartość minerałów ilastych, materii organicznej, uwodnionych tlenków Fe i Mn oraz węglanów i siarczanów), właściwości roztworu (potencjał redox, pH siły jonowej, rodzaju anionu oraz rodzaju i stężenia jonów towarzyszących) [17], a także właściwości zanieczyszczeń (potencjał jonowy, elektroujemność, stała hydrolizy, ilość i charakter grup funkcyjnych, wielkość i kształt cząsteczki) [54].

Podstawowym sposobem opisu zjawiska sorpcji jest izoterma sorpcji opisująca zależność między ilością zaadsorbowanej substancji a stężeniem adsorbatu w warunkach równowagi w stałej temperaturze.

Aktualnie wyznaczanie wartości parametrów sorpcji polega na równoległym stosowaniu modeli matematycznych opisujących transport zanieczyszczeń w wodach oraz wykonaniu odpowiednich doświadczeń w laboratorium.

Do interpretacji wyników doświadczalnych i wyznaczenia stałych w równaniach zwanych parametrami sorpcji stosuje się jedną z izoterm nieliniowych. O wyborze konkretnej izotermi decyduje dopasowanie krzywej teoretycznej do danych empirycznych uzyskanych w doświadczeniu, a miarą tego dopasowania jest współczynnik determinacji R².
Najczęściej stosuje się dwie podstawowe izotermie sorpcji:

– izotermy Freundlich

\[S = K_F C_{eq}^{1/n} \]
(6.1)

o charakterze logarytmicznym, dobrze opisująca adsorpcję na powierzchniach heterogenicznych (energetycznie niejednorodnych) oraz na adsorbentach mikroporowatych,

– izotermy Langmuira

\[S = \frac{QK_L C_{eq}}{1 + K_L C_{eq}} \]
(6.2)

gdzie:

- \(S \) – ilość składnika zaadsorbowanego przez jednostkę masy fazy stałej (mg/kg),
- \(C_{eq} \) – równowagowe stężenie sorbowanego składnika w roztworze (mg/dm³),
- \(K_F \) – współczynnik pojemnościowy (dm³/kg),
- \(1/n \) – miara heterogeniczności powierzchni (im wartość 1/n jest bliższa zero, tym powierzchnia jest bardziej heterogeniczna),
- \(Q \) – maksymalna pojemność sorpcyjna sorbentu w stosunku do barwnika (mg/kg),
- \(K_L \) – stała (dm³/mg) pozwalająca na wyznaczenie parametru rozdziału \(R_L \) [108] z równania:

\[R_L = \frac{1}{1 + K_L C_0} \]
(6.3)

gdzie:

- \(C_0 \) – najwyższe stężenie początkowe barwnika w roztworze (mg/dm³).

Zależność opisana równaniem Freundlica (6.1) zakłada, że równocześnie oddziałują różne typy miejsc aktywnych, zróżnicowanych zarówno pod względem ilości, jak i entalpii swobodnej a także możliwość występowania sorpcji wielowarstwowej. Wykładnik potęgowy 1/n jest wskaźnikiem zróżnicowania entalpii swobodnych związanych z sorpcją z roztworu przez różne składniki heterogenicznego sorbentu i wskazuje przy wartości równej 1, że izoterma jest liniowa, a entalpia swobodna procesu jest stała w całym zakresie stężeń, przy wartościach \(< 1 \), że izoterma ma przebieg rosnący a dodawany sorbat jest wiązany z centrami o coraz mniejszej entalpii swobodnej, natomiast gdy wartość 1/n > 1, izoterma ma przebieg rosnący, a większa ilość cząsteczek na powierzchni zwiększa entalpię.

Teoria kinetyczna dla izotermy Langmuira zakłada, że na powierzchni energetycznie jednorodnej sorbentu istnieje określona liczba centrów sorpcji, z których każde jest zdolne do zaadsorbowania tylko jednej cząsteczki adsorbatu (adsorpcja zlokalizowana), tzn. adsorbat może tworzyć tzw. monowarstwę cząsteczek oddziaływujących z miejscami adsorpcyjnymi (oddziaływanie
„pionowe”), ale nieoddziaływującymi (albo słabo oddziaływującymi) ze sobą (oddziaływania „poziome”). Prawdopodobieństwo zaabsorbowania rośnie wraz z dostępną wolną powierzchnią i zależy od temperatury i wielkości energii adsorpcji. Stan maksymalnej adsorpcji odpowiada obsadzeniu wszystkich centrów i wytworzeniu na powierzchni monomolekularnej warstwy.

Do wyznaczania parametrów sorpcji korzysta się z analizy regresji liniowej lub nieliniowej.

W analizie regresji liniowej równania przekształca się za pomocą operacji algebraicznych do postaci liniowych.

Liniowa postać izoterm Freundlicha ma postać:

$$\log S = \log K_F + 1/n \log C_{eq}$$

(6.1.1)

Parametry równania $1/n$ i K_F wyznaczane są z zależności $\log S$ vs $\log C_{eq}$.

Natomiast izotermę Langmuira można przedstawić w formie liniowej według czterech równań, tj.

$$\frac{C_{eq}}{S} = \frac{1}{Q} \frac{C_{eq}}{K_L Q} + \frac{1}{Q}$$

(6.2.1)

$$\frac{1}{S} = \left(\frac{1}{K_L Q}\right) \frac{1}{C_{eq}} + \frac{1}{Q}$$

(6.2.2)

$$S = Q - \left(\frac{1}{K_L}\right) \frac{S}{C_{eq}}$$

(6.2.3)

$$\frac{S}{C_{eq}} = K_L Q - K_L S$$

(6.2.4)

Parametry Q i K_L wyznacza się odpowiednio z zależności $\frac{C_{eq}}{S}$ vs C_{eq}, $\frac{1}{S}$ vs $\frac{1}{C_{eq}}$, S vs $\frac{S}{C_{eq}}$ lub $\frac{S}{C_{eq}}$ vs S. Najczęściej do oszacowania parametrów sorpcji wykorzystywane jest równanie 6.2.1 lub 6.2.2.

Oszacowane parametry $1/n$ i R_L pozwalają na określenie mechanizmu wiązania zanieczyszczeń. Wartość parametru $1/n$ (równanie 6.1) poniżej 1 i wartość parametru R_L (równania 6.2, 6.3) w granicach 0–1 wskazują na adsorpcję, zaś wartość parametru $1/n$ powyżej 1 – na chemisorpcję [38]. Natomiast oszacowana z równania Langmuira wartość Q wskazuje na maksymalną pojemność sorpcyjną sorbentu w stosunku do barwnika, tj. pojemność monowarstwy.
Stosowanie analizy liniowej regresji obarczone jest błędem, ponieważ wyznaczona linia regresji nie minimalizuje sumy \[\sum_{i} [S_{i} - K_{F} C_{eq}^{n}]^{2} \] lub \[\sum_{i} [S_{i} - \frac{Q K_{L} C_{eq}}{1 + K_{L} C_{eq}}]^{2} \] w zależności od wybranej izotermy. Lepsze dopasowanie izoterm do wartości doświadczalnych otrzymuje się, stosując analizę regresji nieliniowej opartą na klasycznej metodzie najmniejszych kwadratów i korzystając z programów komputerowych, np. STATISTICA [63].

6.2. Oszacowanie stałych w równaniach sorpcji metodą liniową

Do interpretacji wyników doświadczalnych i wyznaczenia parametrów sorpcji wykorzystano postaci liniowe opisanych w rozdziale 6.1 izoterm:

- Freundlicha \[\log S = \log K_{F} + \frac{1}{n} \log C_{eq} \]
- Langmuira \[\frac{C_{eq}}{S} = \frac{1}{Q} C_{eq} + \frac{1}{K_{L} Q} \]

Wyznaczona z równania 6.1.1 wartość parametru 1/n oraz z równań 6.2.1 i 6.3 – wartość parametru R\textsubscript{L} pozwoliły na określenie mechanizmu wiązania barwników, natomiast wartość parametru Q – na wyznaczenie maksymalnej pojemności sorpcyjnej badanych ilów naturalnych i modyfikowanych w stosunku do badanych barwników. Wartość współczynnika determinacji R2 wskazywała na dopasowanie krzywej teoretycznej do danych empirycznych uzyskanych w doświadczeniu. Współczynnik R\textsubscript{L} wyliczano jedynie w przypadkach, gdy równanie Langmuira dobrze opisywało sorpcję barwników na ilach – wysokie wartości R2.

6.2.1. Izoterymy sorpcji barwników reaktywnych

Oszacowane według linearnych postaci równań Freundlicha i Langmuira parametry izoterm sorpcji barwników reaktywnych na ziarnach ilu „Belchatów” i „Adamów” zarówno naturalnych, jak i po modyfikacji oraz odpowiedające im wartości współczynnika R2 zamieszczono w Tabeli 6.1.

Przeprowadzone obliczenia wskazują, iż proces sorpcji barwników reaktywnych na ilach naturalnych i modyfikowanych bardzo dobrze opisuje równanie Freundlicha. Współczynnik determinacji R2 świadczący o dopasowaniu krzywej sorpcji do wartości doświadczalnych był w granicach 0,9216–0,9950. Natomiast przy pomocy równania Langmuira można było opisać sorpcję barwnika RB-81 na ziarnach ilów „Belchatów” i „Adamów” zarówno naturalnych, jak i po modyfikacjach temperaturowej i chemicznej, a także barwnika RR-198 na ziarnach ilu.

Przeprowadzone obliczenia pokazują, że w wyniku modyfikacji chemicznej ilów nastąpił wzrost ich pojemności sorpcyjnej w stosunku do barwników reaktywnych, a do interpretacji danych doświadczalnych w większości przypadków można stosować zarówno izotermę Freundlich, jak i Langmuira. W wyniku tego rodzaju modyfikacji ilów nastąpiło rozpuszczanie niektórych mineralów (kalcyt) oraz degradacja mineralów grupy smektytów, ich powierzchnia stała się bardziej jednorodna i istnieje możliwość opisu sorpcji barwników na takiej powierzchni przez izotermę Langmuira.

Biorąc pod uwagę typ izoterm (klasyfikacja Giles’a) stwierdzono, iż sorpcję przebiegającą wg izotermę S lub H można opisać jedynie równaniem Freundlich.

Oszacowane wartości parametrów $1/n$ (z równania Freundlich) oraz R_L (z równania Langmuira) mieściły się granicach 0–1. Wskazuje to, że barwniki te wiązane były w wyniku adsorpcji fizycznej.

Tabela 6.1. Parametry równań izoterm Freundlich i Langmuira opisujące sorpcję barwników reaktywnych przez ily naturalne i modyfikowane

<table>
<thead>
<tr>
<th>Barwnik</th>
<th>Sorbent</th>
<th>Izoterna Freundlich</th>
<th>Izoterna Langmuira</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_F [dm³/kg]</td>
<td>$1/n$</td>
<td>R^2</td>
</tr>
<tr>
<td>IB</td>
<td>86,90</td>
<td>0,4640</td>
<td>0,9400</td>
</tr>
<tr>
<td>IB 250°C</td>
<td>65,16</td>
<td>0,5970</td>
<td>0,9360</td>
</tr>
<tr>
<td>IB H₂SO₄</td>
<td>121,6</td>
<td>0,6850</td>
<td>0,9540</td>
</tr>
<tr>
<td>IB NaOH</td>
<td>55,98</td>
<td>0,5240</td>
<td>0,9260</td>
</tr>
<tr>
<td>RB-81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA</td>
<td>42,86</td>
<td>0,5470</td>
<td>0,9430</td>
</tr>
<tr>
<td>IA 250°C</td>
<td>86,19</td>
<td>0,7370</td>
<td>0,9880</td>
</tr>
<tr>
<td>IA H₂SO₄</td>
<td>69,02</td>
<td>0,6460</td>
<td>0,9920</td>
</tr>
<tr>
<td>IA NaOH</td>
<td>99,54</td>
<td>0,6700</td>
<td>0,9890</td>
</tr>
<tr>
<td>Barwnik</td>
<td>Sorbent</td>
<td>Izoterma Freundlicha</td>
<td>Izoterma Langmuira</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>K_F [dm3/kg]</td>
<td>I/n</td>
<td>R^2</td>
</tr>
<tr>
<td>IB</td>
<td>1,00</td>
<td>0,9999</td>
<td>1,0000</td>
</tr>
<tr>
<td>IB 250°C</td>
<td>48,64</td>
<td>0,5900</td>
<td>0,9690</td>
</tr>
<tr>
<td>IB H_2SO_4</td>
<td>54,70</td>
<td>0,9320</td>
<td>0,9760</td>
</tr>
<tr>
<td>IB NaOH</td>
<td>142,9</td>
<td>0,5990</td>
<td>0,9610</td>
</tr>
<tr>
<td>RR-198</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td>23,77</td>
<td>0,7270</td>
<td>0,9120</td>
</tr>
<tr>
<td>IB 250°C</td>
<td>41,59</td>
<td>0,6630</td>
<td>0,9750</td>
</tr>
<tr>
<td>IB H_2SO_4</td>
<td>76,39</td>
<td>0,7620</td>
<td>0,9790</td>
</tr>
<tr>
<td>IB NaOH</td>
<td>54,83</td>
<td>0,7930</td>
<td>0,9850</td>
</tr>
<tr>
<td>IB</td>
<td>5,82</td>
<td>0,9980</td>
<td>0,9370</td>
</tr>
<tr>
<td>IB 250°C</td>
<td>45,92</td>
<td>0,6020</td>
<td>0,9180</td>
</tr>
<tr>
<td>IB H_2SO_4</td>
<td>76,39</td>
<td>0,7620</td>
<td>0,9790</td>
</tr>
<tr>
<td>IB NaOH</td>
<td>54,83</td>
<td>0,7930</td>
<td>0,9850</td>
</tr>
<tr>
<td>RBk-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td>71,94</td>
<td>0,4670</td>
<td>0,7380</td>
</tr>
<tr>
<td>IB 250°C</td>
<td>10</td>
<td>0,9470</td>
<td>0,7600</td>
</tr>
<tr>
<td>IB H_2SO_4</td>
<td>220,3</td>
<td>0,5980</td>
<td>0,9300</td>
</tr>
<tr>
<td>IB NaOH</td>
<td>168,3</td>
<td>0,6700</td>
<td>0,9480</td>
</tr>
<tr>
<td>IB</td>
<td>62,23</td>
<td>0,9899</td>
<td>0,9860</td>
</tr>
<tr>
<td>IB 250°C</td>
<td>335,7</td>
<td>0,8550</td>
<td>0,9950</td>
</tr>
<tr>
<td>IB H_2SO_4</td>
<td>52,36</td>
<td>0,7500</td>
<td>0,9410</td>
</tr>
<tr>
<td>IB NaOH</td>
<td>459,2</td>
<td>0,9790</td>
<td>0,9720</td>
</tr>
<tr>
<td>RB-19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td>77,62</td>
<td>0,9970</td>
<td>0,9380</td>
</tr>
<tr>
<td>IB 250°C</td>
<td>53,46</td>
<td>0,8710</td>
<td>0,9910</td>
</tr>
<tr>
<td>IB H_2SO_4</td>
<td>60,39</td>
<td>0,6220</td>
<td>0,9950</td>
</tr>
<tr>
<td>IB NaOH</td>
<td>83,56</td>
<td>0,6430</td>
<td>0,9950</td>
</tr>
<tr>
<td>RY-42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td>5,42</td>
<td>0,8570</td>
<td>0,9760</td>
</tr>
<tr>
<td>IB 250°C</td>
<td>6,99</td>
<td>0,9180</td>
<td>0,9290</td>
</tr>
<tr>
<td>IB H_2SO_4</td>
<td>68,86</td>
<td>0,7630</td>
<td>0,9820</td>
</tr>
<tr>
<td>IB NaOH</td>
<td>112,2</td>
<td>0,7510</td>
<td>0,9210</td>
</tr>
<tr>
<td>IA</td>
<td>59,98</td>
<td>0,6440</td>
<td>0,9580</td>
</tr>
<tr>
<td>IA 250°C</td>
<td>46,34</td>
<td>0,6960</td>
<td>0,9170</td>
</tr>
<tr>
<td>IA H_2SO_4</td>
<td>239,9</td>
<td>0,6180</td>
<td>0,9290</td>
</tr>
<tr>
<td>IA NaOH</td>
<td>93,54</td>
<td>0,5550</td>
<td>0,9640</td>
</tr>
</tbody>
</table>

– nie obliczano ze względu na niskie wartości R^2
6.2.2. Izotermy sorpcji barwników bezpośrednich

Oszacowane parametry izoterm sorpcji barwników bezpośrednich na ziar- nach ilów naturalnych i modyfikowanych według linearznych postaci izoterm Freundlicha i Langmuira oraz odpowiadające im wartości współczynnika determinacji R^2 przedstawiono w Tabeli 6.3.

Przeprowadzone obliczenia pokazują, że wszystkie izotermy sorpcji można opisać za pomocą równania Freundlicha. Natomiast za pomocą równania Langmuira, z dużym prawdopodobieństwem, można opisać sorpcję barwnika DB-74 na obu ilach zarówno naturalnych, jak i modyfikowanych, barwnika DY-142 na ilach modyfikowanych zasadowo, DR-81 na ziarnach naturalnego iłu „Belchatów” i po modyfikacji zasadowej oraz ilu „Adamów” naturalnego i modyfikowanego (Tab. 6.2). Biorąc jednak pod uwagę wartość współczynnika determinacji stwierdzono, że równanie Freundlicha lepiej opisuje sorpcję barwników bezpośrednich na badanych ilach.

Oszacowane z równania Freundlicha wartości parametru $1/n$ były dla sorp- cji barwnika DY-142 na ziarnach obu ilów naturalnych i modyfikowanych termicznie i kwasowo powyżej jedności, sugerując chemisorpcję. Jednocześnie dla tych układów niemożliwy był opis sorpcji przy pomocy równania Langmuira. Uwzględniając teorię kinetyczną dla izoterm Langmira obliczenia te wskazują na sorpcję wielowarstwową. W pozostałych układach barwnik–il oscylowane wartości $1/n$ były poniżej jedności. Wartości te wraz z oblicznymi wartościami R^2 (z wyjątkiem sorpcji barwnika DR-81 na ziarnach IB modyfikowanego temperaturowo i kwasowo) sugerują, iż wiązanie barwników przebiegało w wyniku adsorpcji fizycznej. Poza tym oszacowana dla tych układów z równania Langmuira wartość Q, będąca miarą pojemności sorpcyjnej monowarstwy, była we wszystkich przypadkach zbliżona do wyznaczonej eksperymentalnie wartości maksymalnej sorpcji.

Położenie punktów doświadczalnych w układzie współrzędnych C_{eq}/S vs C_{eq} pokazuje, że izoterna Langmuira lepiej opisuje sorpcję w zakresie wysokich stężeń (Rys. 6.2).
Tabela 6.2. Parametry równań izoterm Freundlicha i Langmuira opisujące sorpcję barwników bezpośrednich przez ły naturalne i modyfikowane

<table>
<thead>
<tr>
<th>Barwnik</th>
<th>Sorbent</th>
<th>Izoterna Freundlich</th>
<th>Izoterna Langmuira</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>K_f [dm3/mg]</td>
<td>l/n</td>
</tr>
<tr>
<td>IB</td>
<td></td>
<td>274,2</td>
<td>1,0204</td>
</tr>
<tr>
<td>IB 250°C</td>
<td></td>
<td>194,1</td>
<td>1,2591</td>
</tr>
<tr>
<td>IB H$_2$SO$_4$</td>
<td></td>
<td>18823</td>
<td>1,2993</td>
</tr>
<tr>
<td>IB NaOH</td>
<td></td>
<td>143,6</td>
<td>0,6434</td>
</tr>
<tr>
<td>DY-142</td>
<td></td>
<td>152,4</td>
<td>1,0230</td>
</tr>
<tr>
<td>IB 250°C</td>
<td></td>
<td>201,7</td>
<td>1,1230</td>
</tr>
<tr>
<td>IA</td>
<td></td>
<td>1777</td>
<td>1,2100</td>
</tr>
<tr>
<td>IA H$_2$SO$_4$</td>
<td></td>
<td>61,94</td>
<td>0,7166</td>
</tr>
<tr>
<td>IA NaOH</td>
<td></td>
<td>227,8</td>
<td>0,8857</td>
</tr>
<tr>
<td>IB 250°C</td>
<td></td>
<td>351,9</td>
<td>0,9970</td>
</tr>
<tr>
<td>ID H$_2$SO$_4$</td>
<td></td>
<td>870,2</td>
<td>0,9432</td>
</tr>
<tr>
<td>IA NaOH</td>
<td></td>
<td>150,8</td>
<td>0,5301</td>
</tr>
<tr>
<td>DR-81</td>
<td></td>
<td>287,3</td>
<td>0,6749</td>
</tr>
<tr>
<td>IA 250°C</td>
<td></td>
<td>478,3</td>
<td>0,6069</td>
</tr>
<tr>
<td>IA H$_2$SO$_4$</td>
<td></td>
<td>182,9</td>
<td>0,6297</td>
</tr>
<tr>
<td>IA NaOH</td>
<td></td>
<td>51,99</td>
<td>0,6195</td>
</tr>
<tr>
<td>DB-74</td>
<td></td>
<td>75,87</td>
<td>0,6096</td>
</tr>
<tr>
<td>IA 250°C</td>
<td></td>
<td>175,7</td>
<td>0,5848</td>
</tr>
<tr>
<td>IA H$_2$SO$_4$</td>
<td></td>
<td>558,5</td>
<td>0,5875</td>
</tr>
<tr>
<td>IA NaOH</td>
<td></td>
<td>111,3</td>
<td>0,7763</td>
</tr>
<tr>
<td>IA</td>
<td></td>
<td>138,4</td>
<td>0,4946</td>
</tr>
<tr>
<td>IA 250°C</td>
<td></td>
<td>108,4</td>
<td>0,6168</td>
</tr>
<tr>
<td>IA H$_2$SO$_4$</td>
<td></td>
<td>70,31</td>
<td>0,6044</td>
</tr>
<tr>
<td>IA NaOH</td>
<td></td>
<td>53,55</td>
<td>0,4439</td>
</tr>
</tbody>
</table>

– nie obliczano ze względu na niskie wartości R^2

Rys. 6.2. Zlinearyzowane izotermisy sorpcji Freundlicha i Langmuira opisujące sorpcję barwnika DR-81 przez il „Belchatów” naturalny i modyfikowany
6.2.3. Izotermy sorpcji barwników kwasowych

Oszacowane według linearnych postaci równania Freundlicha i Langmuira parametry izoterm sorpcji barwników kwasowych na ilach naturalnych i aktywowanych oraz odpowiadające im wartości współczynnika determinacji R^2 przedstawiono w Tabeli 6.3.

Przeprowadzone obliczenia pokazały, że wiązanie wszystkich barwników kwasowych na ziarnach ilów „Belchatów” i „Adamów” zarówno naturalnych, jak i modyfikowanych można opisać za pomocą równania Freundlicha. Jednocześnie równanie Langmuira można zastosować do opisu sorpcji barwnika ABk-1 na obu ilach, a także sorpcji barwnika AR-18 na ziarnach ilu „Belchatów” modyfikowanego kwasowo i ilu „Adamów” modyfikowanego zasadowo, barwnika AB-9 na ziarnach ilu „Adamów” modyfikowanego zasadowo, barwnika AG-16 na ziarnach obu ilów modyfikowanych zasadowo. Jednak współczynnik determinacji R^2 dla opisu danych doświadczalnych za pomocą równania Freundlicha w większości przypadków był wyższy. Również Özcan i Özcan [73] prowadzący badania sorpcji barwnika AR-18 na ziarnach modyfikowanych kwasowo bentonitów wskazują do opisu sorpcji równanie Freundlicha. Na podstawie wyznaczonego z równania Freundlicha parametru 1/n można wnioskować, że barwniki kwasowe AR-18, AG-16 i ABk-1 wiązane były w wyniku adsorpcji fizycznej natomiast barwnik AB-9 – w wyniku chemisorpcji.

Tabela 6.3. Parametry równań izoterm Freundlicha i Langmuira opisujących sorpcję barwników kwasowych przez ily naturalne i modyfikowane

<table>
<thead>
<tr>
<th>Barwnik</th>
<th>Sorbent</th>
<th>K_F [dm^3/kg]</th>
<th>1/n</th>
<th>R^2</th>
<th>S_max [mg/kg]</th>
<th>Q [mg/kg]</th>
<th>K_L [dm^3/mg]</th>
<th>R_L</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB</td>
<td>IB</td>
<td>14,78</td>
<td>0,682</td>
<td>0,9681</td>
<td>2160</td>
<td>3663</td>
<td>0,0011</td>
<td>-</td>
<td>0,3835</td>
</tr>
<tr>
<td>IB 250°C</td>
<td>IB</td>
<td>25,34</td>
<td>0,6299</td>
<td>0,9609</td>
<td>2660</td>
<td>4219</td>
<td>0,0013</td>
<td>-</td>
<td>0,3925</td>
</tr>
<tr>
<td>IB H_2SO_4</td>
<td>IB</td>
<td>32,52</td>
<td>0,6494</td>
<td>0,9838</td>
<td>3070</td>
<td>4167</td>
<td>0,0023</td>
<td>0,2982</td>
<td>0,6959</td>
</tr>
<tr>
<td>IB NaOH</td>
<td>IB</td>
<td>9,363</td>
<td>0,6287</td>
<td>0,8518</td>
<td>1276</td>
<td>6329</td>
<td>0,0002</td>
<td>0,2982</td>
<td>0,6959</td>
</tr>
<tr>
<td>AR-18</td>
<td>IA</td>
<td>7,741</td>
<td>0,7357</td>
<td>0,8531</td>
<td>1390</td>
<td>9524</td>
<td>0,0002</td>
<td>-</td>
<td>0,0102</td>
</tr>
<tr>
<td>AR-18</td>
<td>IA 250°C</td>
<td>14,63</td>
<td>0,5967</td>
<td>0,7827</td>
<td>1260</td>
<td>3378</td>
<td>0,0006</td>
<td>-</td>
<td>0,1052</td>
</tr>
<tr>
<td>AR-18</td>
<td>IA H_2SO_4</td>
<td>12,46</td>
<td>0,591</td>
<td>0,8027</td>
<td>974</td>
<td>2123</td>
<td>0,0009</td>
<td>-</td>
<td>0,3174</td>
</tr>
<tr>
<td>AR-18</td>
<td>IA NaOH</td>
<td>21,73</td>
<td>0,637</td>
<td>0,9766</td>
<td>1480</td>
<td>1825</td>
<td>0,0041</td>
<td>0,1925</td>
<td>0,9259</td>
</tr>
<tr>
<td>IB</td>
<td>IB</td>
<td>175,4</td>
<td>1,6572</td>
<td>0,9499</td>
<td>19774</td>
<td>-0,02841</td>
<td>-0,0515</td>
<td>-</td>
<td>0,1893</td>
</tr>
<tr>
<td>IB 250°C</td>
<td>IB</td>
<td>481,6</td>
<td>1,3227</td>
<td>0,9841</td>
<td>19822</td>
<td>-9174</td>
<td>-0,0439</td>
<td>-</td>
<td>0,2556</td>
</tr>
<tr>
<td>IB H_2SO_4</td>
<td>IB</td>
<td>448,3</td>
<td>1,1389</td>
<td>0,9755</td>
<td>19406</td>
<td>-55556</td>
<td>-0,0079</td>
<td>-</td>
<td>0,0360</td>
</tr>
<tr>
<td>IB NaOH</td>
<td>IB</td>
<td>89,53</td>
<td>0,6262</td>
<td>0,9482</td>
<td>3768</td>
<td>1224</td>
<td>0,0017</td>
<td>-</td>
<td>0,2502</td>
</tr>
<tr>
<td>AB-9</td>
<td>IA</td>
<td>130,2</td>
<td>1,2325</td>
<td>0,8899</td>
<td>18248</td>
<td>-10638</td>
<td>-0,0089</td>
<td>-</td>
<td>0,0428</td>
</tr>
<tr>
<td>AB-9</td>
<td>IA 250°C</td>
<td>83,23</td>
<td>1,4400</td>
<td>0,8827</td>
<td>18686</td>
<td>-4237</td>
<td>-0,0150</td>
<td>-</td>
<td>0,0715</td>
</tr>
<tr>
<td>AB-9</td>
<td>IA H_2SO_4</td>
<td>75,35</td>
<td>1,2110</td>
<td>0,9961</td>
<td>14274</td>
<td>52632</td>
<td>0,0013</td>
<td>-</td>
<td>0,4965</td>
</tr>
<tr>
<td>AB-9</td>
<td>IA NaOH</td>
<td>57,80</td>
<td>0,6821</td>
<td>0,8742</td>
<td>3100</td>
<td>3334</td>
<td>0,0119</td>
<td>0,0766</td>
<td>0,9858</td>
</tr>
</tbody>
</table>
6.2.4. Izotermy sorpcji barwników metalokompleksowych

Oszacowane według linearnych postaci równania Freundlicha i Langmuira parametry izoterm sorpcji barwników metalokompleksowych na ziarnach iłów naturalnych i modyfikowanych oraz odpowiadające im wartości współczynnika determinacji R^2 zestawiono w Tabeli 6.4.

Rys. 6.3. Zlinearyzowane izotermy sorpcji Freundlicha i Langmuira opisujące sorpcję barwnika ABk-1 przez il „Belchatów” naturalny i modyfikowany
Przeprowadzone obliczenia pokazują, iż sorpcję barwników metalokompleksowych można opisać za pomocą obu równań – Freundlicha i Langmuira. Jednocześnie lepsze dopasowanie krzywej teoretycznej do danych doświadczalnych (wyższe wartości R^2) uzyskano dla równania Freundlicha. Stwierdzono, że równanie Langmuira dobrze opisuje sorpcję barwników metalokompleksowych, przede wszystkim przy ich wyższych stężeńach (> 500 mg/dm3) w roztworze (Rys. 6.4).

Oszacowany z równania Langmuira parametr Q, wskazujący na maksymalną pojemność monowarstwy, był nieznacznie wyższy niż maksymalna pojemność sorpcyjna S_{max} ilów wyznaczona doświadczalnie, co wskazuje, że do opisu mechanizmu sorpcji można korzystać z tego równania. Oszacowane wartości parametrów $1/n$ i R_L mieściły się w granicach 0–1 i wskazywały na adsorpcję fizyczną.

Tabela 6.4. Parametry równań izoterm Freundlicha i Langmuira opisujące sorpcję barwników metalokompleksowych przez ilły naturalne i modyfikowane

<table>
<thead>
<tr>
<th>Barwnik</th>
<th>Sorbent</th>
<th>K_F [dm3/kg]</th>
<th>$1/n$</th>
<th>R^2</th>
<th>S_{max} [mg/kg]</th>
<th>Q [mg/kg]</th>
<th>K_L [dm3/mg]</th>
<th>R_L</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB</td>
<td></td>
<td>77,93</td>
<td>0,4693</td>
<td>0,9681</td>
<td>1996</td>
<td>2375</td>
<td>0,0055</td>
<td>0,1516</td>
<td>0,8910</td>
</tr>
<tr>
<td>IB 250°C</td>
<td></td>
<td>106,3</td>
<td>0,4679</td>
<td>0,9484</td>
<td>2516</td>
<td>2874</td>
<td>0,0069</td>
<td>0,1246</td>
<td>0,9262</td>
</tr>
<tr>
<td>IB H_2SO$_4$</td>
<td></td>
<td>149,8</td>
<td>0,5447</td>
<td>0,9635</td>
<td>4840</td>
<td>5682</td>
<td>0,0082</td>
<td>0,1077</td>
<td>0,9401</td>
</tr>
<tr>
<td>IB NaOH</td>
<td></td>
<td>132,0</td>
<td>0,4871</td>
<td>0,9595</td>
<td>3038</td>
<td>3362</td>
<td>0,0070</td>
<td>0,1239</td>
<td>0,9265</td>
</tr>
<tr>
<td>AB-193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td></td>
<td>43,46</td>
<td>0,5347</td>
<td>0,8818</td>
<td>1936</td>
<td>2747</td>
<td>0,0028</td>
<td>0,2597</td>
<td>0,8304</td>
</tr>
<tr>
<td>IB 250°C</td>
<td></td>
<td>115,6</td>
<td>0,4641</td>
<td>0,9680</td>
<td>2380</td>
<td>2525</td>
<td>0,0108</td>
<td>0,0934</td>
<td>0,9549</td>
</tr>
<tr>
<td>IB H_2SO$_4$</td>
<td></td>
<td>140,1</td>
<td>0,5040</td>
<td>0,9709</td>
<td>3150</td>
<td>3344</td>
<td>0,0150</td>
<td>0,0660</td>
<td>0,9804</td>
</tr>
<tr>
<td>IB NaOH</td>
<td></td>
<td>114,3</td>
<td>0,5093</td>
<td>0,9502</td>
<td>2662</td>
<td>2825</td>
<td>0,0144</td>
<td>0,0643</td>
<td>0,9799</td>
</tr>
<tr>
<td>ABk-194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td></td>
<td>60,84</td>
<td>0,8128</td>
<td>0,9764</td>
<td>7600</td>
<td>12048</td>
<td>0,0035</td>
<td>0,2251</td>
<td>0,7652</td>
</tr>
<tr>
<td>IB 250°C</td>
<td></td>
<td>135,3</td>
<td>0,7204</td>
<td>0,9613</td>
<td>8600</td>
<td>10638</td>
<td>0,0084</td>
<td>0,1080</td>
<td>0,9356</td>
</tr>
<tr>
<td>IB H_2SO$_4$</td>
<td></td>
<td>272,7</td>
<td>0,6059</td>
<td>0,9259</td>
<td>9202</td>
<td>10101</td>
<td>0,0152</td>
<td>0,0612</td>
<td>0,9637</td>
</tr>
<tr>
<td>IB NaOH</td>
<td></td>
<td>201,6</td>
<td>0,6417</td>
<td>0,9143</td>
<td>8330</td>
<td>9434</td>
<td>0,0122</td>
<td>0,0751</td>
<td>0,9534</td>
</tr>
<tr>
<td>IA</td>
<td></td>
<td>71,45</td>
<td>0,8035</td>
<td>0,9865</td>
<td>8040</td>
<td>12820</td>
<td>0,0040</td>
<td>0,2027</td>
<td>0,9147</td>
</tr>
<tr>
<td>IA 250°C</td>
<td></td>
<td>178,6</td>
<td>0,6689</td>
<td>0,9306</td>
<td>8750</td>
<td>14084</td>
<td>0,0062</td>
<td>0,1409</td>
<td>0,8907</td>
</tr>
<tr>
<td>IA H_2SO$_4$</td>
<td></td>
<td>222,9</td>
<td>0,5952</td>
<td>0,9356</td>
<td>7730</td>
<td>8547</td>
<td>0,0128</td>
<td>0,0718</td>
<td>0,9508</td>
</tr>
<tr>
<td>IA NaOH</td>
<td></td>
<td>178,6</td>
<td>0,6689</td>
<td>0,9306</td>
<td>1954</td>
<td>2041</td>
<td>0,0130</td>
<td>0,0708</td>
<td>0,9797</td>
</tr>
</tbody>
</table>
Podsumowując uzyskane wyniki, można stwierdzić, iż sorpcję wybranych barwników reaktywnych, bezpośrednich i kwasowych z dużym prawdopodobieństwem można opisać za pomocą równania Freundlich. Oszacowane z równania wartości parametru 1/n w granicach 0–1 wskazują na adsorpcję fizyczną barwników anionowych, a wartości 1/n > 1 – na chemisorpcję i tworzenie wielu warstw barwników kationowych na powierzchni ziarn minerałów. Stwierdzono także, że równanie Freundlich opisuje sorpcję zarówno typu L, jak również S i H (wg Giles’a). Natomiast równanie Langmuira opisuje sorpcję typu L, a w niektórych przypadkach także typu S i nie opisuje sorpcji typu H.
7. Wyznaczenie współczynników w równaniach kinetycznych

7.1. Wprowadzenie

Kinetyka chemiczna zajmuje się badaniem szybkości reakcji chemicznych, a miarą szybkości reakcji chemicznych jest szybkość zmian stężenia reagentów lub produktów w czasie w stałej temperaturze. Proces adsorpcji jest kontrolowany przez kinetykę reakcji pomiędzy adsorbentem i jonami, cząsteczkami lub atomami adsorbatu. Reakcjami chemicznymi w procesie sorpcji mogą być reakcje kompleksowania lub reakcje wymiany jonowej między jonami adsorbatu a grupami funkcjonalnymi zlokalizowanymi na powierzchni adsorbutu. Ponadto szybkość procesu sorpcji może być kontrolowana poprzez transport masy w roztworze, dyfuzję adsorbatu poprzez warstwę cieczy otaczającą ziarno i dyfuzję wewnętrz porów.

W związku z tym do opisu mechanizmu sorpcji z roztworu na adsorbencie porowatym wykorzystuje się na ogół 4-etapowy model polegający na:

– transporcie masy z głębi fazy ciekłej do powierzchni granicznej występującej wokół poszczególnych ziaren adsorbutu,
– dyfuzji adsorbatu poprzez warstwę cieczy otaczającą ziarno do powierzchni adsorbutu (dyfuzja zewnętrzna przez ciekły film),
– procesie ustalania się równowagi adsorpcyjnej (sorpcja fizyczna, reakcje jonowymienne, chemisorpcja),
– dyfuzji wewnętrznej (dyfuzja w głąb porów i transport masy po powierzchni porów).

Dyfuzja zewnętrzna i równowaga adsorpcyjna zachodzą bardzo szybko. Dyfuzja zewnętrzna zależy od szybkości mieszania zawiesiny. Wraz ze zwiększeniem szybkości mieszania grubość warstwy cieczy otaczającej ziarno adsorbutu maleje i maleje również wpływ tego rodzaju dyfuzji na szybkość adsorpcji. Natomiast procesem kontrolującym lub przynajmniej w istotny sposób wpływającym na całkowitą szybkość adsorpcji jest dyfuzja wewnętrzna [79].

Do określenia roli dyfuzji wewnętrz ziarn w procesie sorpcji stosuje się wykres Boyla:
q = K t^{1/2} \quad (7.1)

gdzie:
K – współczynnik dyfuzji wewntrzcząsteczkowej (mg/kg·min),
q – ilość barwnika zasorbowanego w czasie t (mg/kg).

Dane eksperymentalne przedstawia się w układzie q(t) vs t^{1/2}, a współczynnik K wylicza się z nachylenia prostej. Zależność liniowa świadczy, że ten rodzaj dyfuzji istotnie wpływa na całkowitą szybkość sorpcji.

Do opisu kinetyki adsorpcji na granicy faz ciecz–ciao stałe i wyznaczania stałych kinetycznych stosuje się równania kinetyczne wyrażające zależność szybkości reakcji od stężeń reagentów biorących udział w reakcji. Współczynnikami proporcjonalności w równaniach kinetycznych są stałe szybkości k. Do ich wyznaczania stosuje się przeważnie równania pierwszego i drugiego rzędu.

W przypadku reakcji pierwszego rzędu szybkość reakcji jest proporcjonalna do stężenia jednej substancji reagującej. Szybkość reakcji w tym przypadku określa równanie różniczkowe:

\[v = -\frac{dC_A}{dt} = k C_A \quad (7.2) \]

Po przekształceniu, całkując równanie stronami w przedziale czasu (0, T) i stężeń (C_0 i C), otrzymujemy równanie w postaci:

\[\ln(C) - \ln(C_0) = kt \quad (7.3) \]

\[\ln(C_0/C) = kt \quad (7.4) \]

Wykres zależności \(\ln(C) \) od czasu t jest linią prostą o współczynniku kierunkowym równym k.

Dla reakcji drugiego rzędu szybkość reakcji jest proporcjonalna do kwadratu stężenia jednego ze składników lub do iloczynu stężeń dwóch składników. Wyprowadzone równanie dla reakcji drugiego rzędu, gdzie:

\[v = -\frac{dC_A}{dt} = kC^2 \quad (7.5) \]

po scalowaniu w granicach C_0 do C, ma postać:

\[\frac{1}{C} = \frac{1}{C_0} = kt \quad (7.6) \]

W praktyce, szczególnie w procesach technologicznych takich jak oczyszczanie wód z różnego rodzaju zanieczyszczeń, do opisu kinetyki sorpcji wykorzystuje się równania empiryczne pseudo-pierwszego rzędu Lagergrena i pseudo-drugiego rzędu. Równania te można stosować, gdy występuje nadmiar jednego z reagentów i nawet całkowity przebieg reakcji nie powoduje dużych zmian stężeń tego reagenta.
Równanie pseudo-pierwszego rzędu w formie różniczkowej ma postać:

\[
\frac{dq_1}{dt} = k_1(q_{e1} - q_t)
\]

(7.7)

Po rozwiązaniu równania względem \(q \) z warunkami brzegowymi \(q(t = 0) = 0 \) i obustronnym zlogarytmowaniu, przyjmuje ono postać liniową:

\[
\ln(q_{e1} - q_t) = \ln(q_{e1}) - k_1 t
\]

(7.8)

gdzie:

- \(q_{e1} \) – ilość zanieczyszczeń zaadsorbowanych w warunkach równowagowych (mg/kg),
- \(q_t \) – ilość zanieczyszczeń zaadsorbowanych w jednostce czasu \(t \) (mg/kg),
- \(k_1 \) – stała szybkości reakcji zwana stałą Lagergrena (1/min).

Równanie pseudo-drugiego rzędu:

\[
\frac{dq_1}{dt} = k_2(q_{e2} - q_t)^2
\]

(7.9)

Po scalowaniu równania (7.9) w granicach \(t = 0 \) do \(t = t_i \) i \(q_t = 0 \) do \(q_t = q_{t_i} \) i przekształceniach otrzymuje się postać liniową pozwalającą na wyznaczenie współczynników \(k_2 \) i \(q_e \):

\[
\frac{t}{q_t} = \frac{1}{k_2 \cdot q_e^2} + \frac{t}{q_e}
\]

(7.9)

gdzie:

- \(q_e \) – ilość zanieczyszczeń zaadsorbowanych w warunkach równowagowych (mg/kg),
- \(q_t \) – ilość zanieczyszczeń zaadsorbowanych w jednostce czasu \(t \) (mg/kg),
- \(k_2 \) – stała szybkości reakcji (kg/mg/min).

7.2. Warunki badania kinetyki sorpcji wybranych barwników na ziarnach ilów

Badania dotyczące kinetyki adsorpcji wybranych barwników (RB-19, DB-74, AG-16, ABk-194, DY-142) na ziarnach ilu smektytowego naturalnego oraz aktywowanego termicznie i chemicznie polegały na określeniu szybkości procesu wiązania barwników na podstawie stałych kinetycznych, tj. ilości barwników zaadsorbowanych w jednostce czasu \(q_t \), i stałej szybkości adsorpcji \(k \).
Badania kinetyki reakcji przeprowadzono dla stężenia początkowego barwników w roztworze równego 250 mg/dm³ i przy stosunku faza stała: roztwór = 1:20 (tj. 1 g próbki i 20 ml roztworu barwnika). Stężenie barwników w roztworze mierzono po 2,5, 5, 15, 30, 60, 120, 300, 720, 1080 i 1440 minutach.

Do interpretacji wyników i do określenia zależności pomiędzy ilością zasorbowanych barwników a czasem reakcji oraz do wyznaczania rzędu reakcji wykorzystano równanie kinetyczne pseudo-pierwszego (równanie 7.8) i pseudo-drugiego rzędu (równanie 7.10), a do określenia roli dyfuzji wewnętrzno-steenckowej w procesie sorpcji – równanie Boyla (równanie 7.1). Parametry w równaniach 7.8 i 7.10 oszacowano odpowiednio z równania prostej \(y = ax + b \) w układzie \(\ln(q_{c1} - q) \) vs t, gdzie \(q_{c1} = 2,718^a \), \(k_1 = b \) oraz z równania prostej \(t/q \) vs t, gdzie \(q_{c2} = 1/a \), \(k_2 = a^2/b \). Rząd reakcji określono przyjmując jako kryterium wyboru wartości współczynnika determinacji pokazującego dopasowanie prostej do danych doświadczalnych.

Ponadto dane eksperymentalne przedstawiono w układzie \(q(t) vs t^{1/2} \) dla niskich pokryć powierzchni, gdy spełniona jest nierówność \(q(t) < q_c/3 \) [79] i z nachylenia prostej wyliczono współczynnik dyfuzji \(K \).

7.3. Wyznaczenie współczynników w równaniach kinetycznych

Analizując ilość zasorbowanych barwników przez ziarna ilu w czasie stwierdzono, że już po 2,5 minutach kontaktu faza stała–roztwór ilość zasorbowanych barwników DY-142 i DR-81 przekraczała 95% ilości zasorbowanych w warunkach równowagowych. Natomiast dla pozostałych barwników stwierdzono, że:

- ilość zasorbowanego barwnika RB-19 po 5 minutach wynosiła 15% ilości zasorbowanej w warunkach równowagowych, po 120 minutach – 50%, a warunki równowagowe osiągnięto po 1080 minutach,
- ilość zabsorbowanego barwnika AG-16 po 5 minutach wynosiła 40% ilości zasorbowanej w warunkach równowagowych, po 60 minutach – 50%, warunki równowagowe osiągnięto po 720 minutach,
- ilość zabsorbowanego barwnika ABk-194 po 5 minutach wynosiła 8% ilości zasorbowanej w warunkach równowagowych, po 60 minutach – 50%, warunki równowagowi osiągnięto po 1080 minutach,
- ilość zasorbowanego barwnika DB-74 po 5 minutach wynosiła 32% ilości zasorbowanej w warunkach równowagowych, po 60 minutach – 50%, warunki równowagowi osiągnięto po 720 minutach.

Przykładowe krzywe zależności ilości zasorbowanych barwników przez ziarna ilu „Belchatów” w funkcji czasu przedstawiono na Rys. 7.1. Wyniki te pokazują znaczny wpływ charakteru barwnika na przebieg sorpcji. Barwnik kationowy DY-142 był usuwany z roztworu bardzo szybko i w ciągu kilku mi-
nut był wiązany na powierzchni ilów. Natomiast sorpcja barwnika anionowego (RB-19) przebiegała wolno, a czas równowagi został uzyskany po kilkunastu godzinach.

Wyniki te pokazały również, iż czas wytrząsania próbek wyznaczony na 24 godzin (1440 min) był wystarczający do osiągnięcia przez wszystkie badane układy adsorbent – barwnik stanu równowagi.

Oszacowane z równań kinetycznych stałe szybkości reakcji \(k \) i ilość zasorbowanego barwnika w czasie \(q_e \) oraz współczynnik \(R^2 \) przedstawiono w Tabeli 7.1.

Analizując możliwość opisania danych doświadczalnych zlinearyzowanym równaniem pseudo-pierwszego rzędu, widać, że równaniem tym można opisać jedynie sorpcję barwników o charakterze anionowym. Oszacowane wartości parametru \(q_{e1} \) były na poziomie wartości wyznaczonych laboratoryjnie, a wartość współczynnika determinacji – powyżej 0,75. Natomiast równaniem tym nie można opisać sorpcji barwników o charakterze kationowym.

Z kolei stosując do opisu wyników doświadczalnych postać liniową równania pseudo-drugiego rzędu, zarówno barwników o charakterze anionowym, jak i kationowym, uzyskano bardzo wysoki stopień dopasowania, a wartości współczynników determinacji były na poziomie > 0,91.

Analiza stałych szybkości sorpcji barwników \(k_2 \) oszacowanych z liniowych postaci równania pseudo-drugiego rzędu pozwala stwierdzić, że najwyższe wartości były obserwowane dla barwników DY-142 i DR-81. Wynosiły one odpowiednio 0,000940 i 0,000440 kg/mg·min, i były 1 lub 2 rzędy wielkości wyższe od stałych szybkości dla pozostałych badanych barwników. Wyniki te potwierdzają wcześniejsze obserwacje, że barwniki o charakterze kationowym ulegają wiązaniu lub wytrzącaniu na powierzchni ziaren mineralów budujących ily. Wiązanie ich może odbywać się w wyniku reakcji chemicznej mię-
dzy ujemnie naładowaną powierzchnią sorbentu a kationem barwnika i reakcja ta limituje proces sorpcji.

Oszacowane z tego równania ilości barwników zaadsorbowanych w warunkach równowagowych q_e były porównywalne z wartościami pojemności sorpcyjnej ilu w stosunku do poszczególnych barwników o stężeniu początkowym równym 250 mg/dm3 wyznaczonymi doświadczalnie.

Również sorpcja wybranych barwników przez łody modyfikowane termicznie i chemicznie odbywała się według równania pseudo-drugiego rzędu. W wyniku modyfikacji ilów nastąpiła zmiana stałych szybkości reakcji k_2 oraz ilości barwników zaadsorbowanych w warunkach równowagowych q_e. Dla barwnika RB-19 stałe szybkości reakcji zmieniły się w szeregu: i po modyfikacji kwasowej $> i$ po modyfikacji zasadowej $> i$ naturalny $> i$ modyfikowany termicznie, zaś dla barwnika DB-74 w szeregu: i naturalny $> i$ modyfikowany termicznie $> i$ po modyfikacji zasadowej $> i$ po modyfikacji kwasowej (Tab. 7.2). Zaoberwowano również, iż w wyniku modyfikacji temperaturowej ilu „Belchatów” nastąpiło obniżenie wartości stałych szybkości reakcji k_2.

Prostoliniowa zależność $q(t)$ vs $t^{1/2}$ wskazuje na istotną rolę dyfuzji wewnętrznej cząsteczek w procesie sorpcji. Wyliczone współczynniki dyfuzji przedstawiono w Tab. 7.1.

Także szeroko publikowane wyniki badań wiązania barwników na sorbentach mineralnych (bentonity naturalne i modyfikowane kwasowo) wskazują, że proces ten przebiega według równania pseudo-drugiego rzędu [56, 73].

Tabela 7.1. Stałe szybkości sorpcji k oraz ilości barwników q usuniętych z roztworu w warunkach równowagi oszacowane na podstawie równań kinetycznych pseudo-pierwszego i pseudo-drugiego rzędu

<table>
<thead>
<tr>
<th>Barwnik</th>
<th>S [mg/kg]</th>
<th>Reakcja pseudo-pierwszego rzędu</th>
<th>Reakcja pseudo-drugiego rzędu</th>
<th>Dyfuzja wewnętrz cząsteczka</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q_{i1} [mg/kg]</td>
<td>k_{i1} [1/min]</td>
<td>R^2</td>
<td>q_{i2} [mg/kg]</td>
</tr>
<tr>
<td>RB-19</td>
<td>4680</td>
<td>4196 0,00088 0,7715</td>
<td></td>
<td>4566 0,00000099 0,9621</td>
</tr>
<tr>
<td>AG-16</td>
<td>2826</td>
<td>1360 0,00051 0,1581</td>
<td></td>
<td>2252 0,0000064 0,9082</td>
</tr>
<tr>
<td>ABk-194</td>
<td>3134</td>
<td>2302 0,00066 0,7547</td>
<td></td>
<td>2977 0,0000024 0,9109</td>
</tr>
<tr>
<td>DB-74</td>
<td>2632</td>
<td>2569 0,00283 0,8154</td>
<td></td>
<td>2762 0,0000124 0,9945</td>
</tr>
<tr>
<td>DY-142</td>
<td>4762</td>
<td>6,33 0,00196 0,2704</td>
<td></td>
<td>4975 0,000940 1,000</td>
</tr>
<tr>
<td>DR-81</td>
<td>4482</td>
<td>173,2 0,00570 0,4983</td>
<td></td>
<td>4566 0,0000440 0,9999</td>
</tr>
</tbody>
</table>
Tabela 7.2. Wpływ modyfikacji ilu na parametry kinetyki sorpcji wyznaczone z równania reakcji pseudo-pierwszo i pseudo-drugo rzędowej

<table>
<thead>
<tr>
<th></th>
<th>S [mg/kg]</th>
<th>qe1 [mg/kg]</th>
<th>k1 [1/min]</th>
<th>R²</th>
<th>qe2 [mg/kg]</th>
<th>k2 [kg/mg.min]</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB-19</td>
<td>IB</td>
<td>4680</td>
<td>4197</td>
<td>0,000885</td>
<td>0,7715</td>
<td>4566</td>
<td>0,000000999</td>
</tr>
<tr>
<td></td>
<td>IB250°C</td>
<td>4584</td>
<td>4020</td>
<td>0,000704</td>
<td>0,7448</td>
<td>4237</td>
<td>0,00000085</td>
</tr>
<tr>
<td></td>
<td>IB H₂SO₄</td>
<td>2364</td>
<td>1407</td>
<td>0,003725</td>
<td>0,9119</td>
<td>2012</td>
<td>0,00000954</td>
</tr>
<tr>
<td></td>
<td>IB NaOH</td>
<td>4776</td>
<td>4375</td>
<td>0,003468</td>
<td>0,9271</td>
<td>4950</td>
<td>0,0000137</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>2632</td>
<td>1569</td>
<td>0,00283</td>
<td>0,8154</td>
<td>2732</td>
<td>0,0000124</td>
</tr>
<tr>
<td></td>
<td>IB250°C</td>
<td>2768</td>
<td>1136</td>
<td>0,002492</td>
<td>0,9502</td>
<td>2767</td>
<td>0,0000117</td>
</tr>
<tr>
<td></td>
<td>IB H₂SO₄</td>
<td>4236</td>
<td>2307</td>
<td>0,001894</td>
<td>0,9668</td>
<td>3968</td>
<td>0,00000435</td>
</tr>
<tr>
<td></td>
<td>IB NaOH</td>
<td>3410</td>
<td>1880</td>
<td>0,002898</td>
<td>0,9353</td>
<td>2874</td>
<td>0,00000547</td>
</tr>
<tr>
<td>DB-74</td>
<td>IB</td>
<td>4762</td>
<td>6,33</td>
<td>0,00196</td>
<td>0,2704</td>
<td>4975</td>
<td>0,000940</td>
</tr>
<tr>
<td></td>
<td>IB250°C</td>
<td>4930</td>
<td>111,3</td>
<td>0,002842</td>
<td>0,1636</td>
<td>4933</td>
<td>0,000523</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>4822</td>
<td>173,2</td>
<td>0,00570</td>
<td>0,4983</td>
<td>4566</td>
<td>0,000440</td>
</tr>
<tr>
<td></td>
<td>IB250°C</td>
<td>4972</td>
<td>304,4</td>
<td>0,001894</td>
<td>0,3326</td>
<td>4975</td>
<td>0,0000098</td>
</tr>
<tr>
<td>AG-16</td>
<td>IB</td>
<td>2826</td>
<td>1361</td>
<td>0,000511</td>
<td>0,1581</td>
<td>2252</td>
<td>0,00000942</td>
</tr>
<tr>
<td></td>
<td>IB250°C</td>
<td>3266</td>
<td>912,7</td>
<td>0,000664</td>
<td>0,0793</td>
<td>2058</td>
<td>0,00000644</td>
</tr>
<tr>
<td>ABk-194</td>
<td>IB</td>
<td>3134</td>
<td>2303</td>
<td>0,000664</td>
<td>0,7547</td>
<td>2977</td>
<td>0,00000237</td>
</tr>
<tr>
<td></td>
<td>IB250°C</td>
<td>3696</td>
<td>3226</td>
<td>0,000608</td>
<td>0,7729</td>
<td>3424</td>
<td>0,00000214</td>
</tr>
</tbody>
</table>

A

Rys. 7.2. Kinetyka sorpcji barwników RB-19 i DY-142 na ziarnach ilu „Belchatów” wg równania kinetycznego pseudo-pierwszego (A) i pseudo-drugiego rzędu (B)
Rys. 7.3. Wpływ modyfikacji ilu na przebieg reakcji wg równania kinetycznego pseudo-pierwszego (A) i pseudo-drugiego rzędu (B)
8. Skuteczność usuwania barwników z rzeczywistych ścieków włókienniczych metodą sorpcji na ilach naturalnych i modyfikowanych termicznie

8.1. Wprowadzenie

Proces barwienia oprócz barwników wymaga stosowania również wiele różnych chemicznych środków pomocniczych w zależności od użytej grupy barwników i przyjętej metody. Stosuje się m.in. NaOH, NaCl, Na₂CO₃, CH₃COOH, detergenty, których zadaniem jest intensyfikacja procesu barwienia, utrwalenie barwy, uzyskanie równomiernych wybarwień. Substancje te (oprócz barwników) przedostają się do ścieków w takiej ilości, w jakiej zostały użyte w procesie barwienia i mogą zmieniać właściwości ścieków, a tym samym skuteczność sorbentów, których efektywność jest oznaczana na ściekach modelowych. Ponadto, w procesie barwienia w celu otrzymania szerokiej palety barw, barwniki są mieszane ze sobą w różnych konfiguracjach, a do ścieków przechodzą ich ilości, które zależą od efektywności wiązania poszczególnych barwników przez włókna tkanin.

W związku z tym przeprowadzono badania sorpcji barwników zawartych w ściekach rzeczywistych generowanych z zakładu włókienniczego na ziarnach ilu „Belchatów” i „Adamów” naturalnych i modyfikowanych temperaturowo.

8.2. Charakterystyka ścieków pofarbiarskich

W celu określenia możliwości zastosowania badanych ilów jako sorbentów na skalę przemysłową przeprowadzono badania laboratoryjne polegające na określeniu stopnia usunięcia barwników oraz substancji pomocniczych zawartych w próbkach ścieków rzeczywistych generowanych z zakładu włókienniczego.
Pobrano trzy próbki ścieków powstałych w wyniku barwienia tkanin wełnianych przez firmy, garnitury i sukienki w zakładzie włókien-niczym. Ścieki te zawierały pozostałości barwników podane przez wytwórcę i charakteryzowały się następującymi parametrami:

– próbka 1 – ścieki po kąpieli barwiarskiej zawierającej barwniki Mordant black 17, Mordant black 11 oraz dwuchromian sodu: pH 5,34, przewodność elektryczna właściwa 2493 μS/cm, ChZT 1421 mgO₂/dm³, stężenie jonów Cr(VI) 183 mg/dm³, λ (długość fali, przy której mierzono absorbancję) 618 nm;

– próbka 2 – ścieki po kąpieli barwiarskiej zawierającej barwnik Acid blue 61: pH 5,54, przewodność elektryczna właściwa 1096 μS/cm, ChZT 591,5 mgO₂/dm³, λ (długość fali, przy której mierzono absorbancję) 594 nm;

– próbka 3 – ścieki po kąpieli barwiarskiej zawierającej Acid green 25, Acid blue 62, Acid brown 355: pH 7,19, przewodność elektryczna właściwa 1002 μS/cm, ChZT 138,2 mgO₂/dm³, λ (długość fali, przy której mierzono absorbancję) 590 nm.

8.3. Oznaczanie skuteczności usuwania barwników ze ścieków rzeczywistych metodą sorpcji na ilach naturalnych i modyfikowanych termicznie

Skuteczność usuwania barwników ze ścieków podano jako stopień usunięcia (retencji) barwników z roztworu wyrażony wzorem:

\[R = \frac{A_0 - A_{eq}}{A_0} \cdot 100\% \]

(8.1)

gdzie:

R – stopień usunięcie (retencji) barwnika (%),

A₀ – absorbancja promieniowania o odpowiedniej długości fali przechodzącego przez kuvetę zawierającą roztwór,

A_{eq} – absorbancja promieniowania o odpowiedniej długości fali przechodzącego przez kuvetę z roztworem po sorpcji (w warunkach równowagowych).

Wykorzystanie do obliczenia stopnia usuwania barwnika absorbancji zamiast stężenia jest możliwe jedynie wtedy, gdy roztwór spełnia II prawo absorpcji (prawo Lamberta Beera), tj. gdy absorbancja promieniowania przechodzącego przez roztwór jest proporcjonalna do stężenia. W związku z tym dla próbek ścieków wykonano skanowanie widma promieniowania elektromagnetycznego w zakresie widzialnym co 1 nm i wyznaczono długości fali, dla których obserwowano maksima absorbancji promieniowania odpowiadające pochłanianiu promieniowania przez poszczególne barwniki zawarte
w ściekach. Następnie zmierzono absorbancję promieniowania przy tych długościach fali w ścieku i ścieku dwukrotnie rozcieńczonym. Dwukrotne obniżenie absorbancji świadczyło o tym, że badane ścieki spełniają prawo Lamberta Beera.

Przeprowadzono sorpcję barwników ze ścieków przez ziarna ilów natural-nych i modyfikowanych metodą batch, opisaną w rozdziale 4.3.3, przy stosunku faza stała-roztwór 1:10, 1:20, 1:50, 1:75 i 1:100 i czasie wytrząsania 24 h.

Mierzono absorbancję promieniowania elektromagnetycznego po przejściu przez ściek (A₀) i ściek po sorpcji (Aₐq), ze wzoru 8.1 wyliczono stopień retencji barwników ze ściekami, a tym samym skuteczność użytych w badaniach ilów. Ponadto w próbie ścieku 1 przed i po sorpcji oznaczono stężenie chromu, ze wzoru 4.1 oraz stopień usunięcia chromu, ze wzoru 4.2.

8.4. Skuteczność ilów w usuwaniu barwników ze ścieków powstających w zakładzie włókienniczym

Na podstawie zarejestrowanych w świetle widzialnym widm próbek ścieków z zakładu włókienniczego oraz próbek po sorpcji barwników w nich zawartych na próbkach ilu „Belchatów” i „Adamów” naturalnych i modyfikowanych termicznie obliczono stopień usunięcia barwników. Stwierdzono, że oba ily zarówno naturalne, jak i po modyfikacji temperaturowej wiązały barwniki ze ścieku 1 całkowicie, niezależnie od stężenia zawiesiny. W roztworach po sorpcji nie zarejestrowano żadnych pików (Tab. 8.1).

Natomiast stopień usuwania barwników ze ścieku 2 i 3 był na poziomie 30–90% i zależał od właściwości użytego do badań ilu oraz stężenia zawiesiny. Il „Belchatów” cechował się wyższą zdolnością do usuwania barwników niż il „Adamów”. Również oba ily po modyfikacji temperaturowej wykazywały wyższy stopień usuwania barwników w porównaniu do ilów naturalnych (Tab. 8.1). Ponadto stwierdzono wzrost stopnia usunięcia barwników wraz ze wzrostem stężenia zawiesiny. Przekształcając równanie 4.2 względem równania 4.1 uzyskuje się równanie:

\[R = \frac{S_m}{C_0 V} \times 100\% \quad (8.2) \]

wskazujące na proporcjonalną zależność stopnia usunięcia od masy sorbentu i odwrotnie proporcjonalną od objętości roztworu.
Tabela 8.1. Stopień usunięcia barwników ze ścieków metodą sorpcji na ilach (%)

<table>
<thead>
<tr>
<th>Ścieki</th>
<th>Skład kąpieli barwiarskiej</th>
<th>Sorbent</th>
<th>Stosunek faza stała: roztwór</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1:10</td>
</tr>
<tr>
<td>Próbka 1</td>
<td>Mordant black 17</td>
<td>IB</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Mordant black 11</td>
<td>IB 250°C</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Dwuchromian sodu</td>
<td>IA</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>DA 250°C</td>
<td>IA 250°C</td>
<td>100</td>
</tr>
<tr>
<td>Próbka 2</td>
<td>Acid blue 62</td>
<td>IB</td>
<td>66,35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IB 250°C</td>
<td>71,45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA</td>
<td>54,63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA 250°C</td>
<td>71,35</td>
</tr>
<tr>
<td>Próbka 3</td>
<td>Acid green 25</td>
<td>IB</td>
<td>78,02</td>
</tr>
<tr>
<td></td>
<td>Acid blue 62</td>
<td>IB 250°C</td>
<td>90,21</td>
</tr>
<tr>
<td></td>
<td>Acid brown 355</td>
<td>IA</td>
<td>66,19</td>
</tr>
<tr>
<td></td>
<td>Acid yellow 194</td>
<td>IA 250°C</td>
<td>87,98</td>
</tr>
</tbody>
</table>

W roztworach równowagowych po sorpcji ścieków oznaczono pH. We wszystkich przypadkach wartości pH mieściły się w granicach wartości dopuszczalnych dla ścieków odprowadzanych do wód i do ziemi (6,5–9,0), mimo kwaśnego odczynu ścieków 1 i 2 (Tab. 8.2). Wynika to z dobrych właściwości buforowych badanych ilów [57].

Tabela 8.2. Wartości pH w roztworach równowagowych po sorpcji zanieczyszczeń

<table>
<thead>
<tr>
<th>Ścieki</th>
<th>Skład kąpieli barwiarskiej</th>
<th>Sorbent</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1:10</td>
</tr>
<tr>
<td>Próbka 1</td>
<td>Mordant Black 17</td>
<td>IB</td>
<td>8,22</td>
</tr>
<tr>
<td></td>
<td>Mordant Black 11</td>
<td>IB 250°C</td>
<td>8,05</td>
</tr>
<tr>
<td></td>
<td>Dwuchromian sodu</td>
<td>IA</td>
<td>6,33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA 250°C</td>
<td>6,31</td>
</tr>
<tr>
<td>Próbka 2</td>
<td>Acid Blue 62</td>
<td>IB</td>
<td>8,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IB 250°C</td>
<td>8,06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA</td>
<td>8,47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA 250°C</td>
<td>8,47</td>
</tr>
<tr>
<td>Próbka 3</td>
<td>Acid Green 25</td>
<td>IB</td>
<td>8,16</td>
</tr>
<tr>
<td></td>
<td>Acid Blue 62</td>
<td>IB 250°C</td>
<td>8,16</td>
</tr>
<tr>
<td></td>
<td>Acid Brown 355</td>
<td>IA</td>
<td>8,47</td>
</tr>
<tr>
<td></td>
<td>Acid Yellow 194</td>
<td>IA 250°C</td>
<td>8,47</td>
</tr>
</tbody>
</table>
Oznaczona w roztworach po sorpcji ogólna zawartość zanieczyszczeń organicznych wyrażona jako ChZT oraz obliczony stopień ich usunięcia (Tab. 8.3) pokazały, iż zastosowane były są w stanie usuńć ładunek zanieczyszczeń organicznych wyrażonych jako ChZT ze ścieków 2 i 3 na poziomie 30–84%, a ze ścieku 1 na poziomie 12–32%. Wraz ze wzrostem stężenia zawiesiny iłu obserwowano wzrost stopnia usunięcia zanieczyszczeń. Zaobserwowano również wpływ modyfikacji temperaturowej na skuteczność usuwania ChZT ze ścieków, przy czym zależał on od rodzaju ścieku (Tab. 8.3).

Mimo sorpcji barwników z roztworów wartości ChZT w próbkach 1 i 2 były nadal bardzo wysokie, przekraczające wartości dopuszczalne dla odprowadzanych ścieków (125 mgO₂/dm³) [106].

Tabela 8.3. Zawartość zanieczyszczeń organicznych wyrażonych jako ChZT w ściekach po sorpcji (mgO₂/dm³) i stopień redukcji ChZT (%)

<table>
<thead>
<tr>
<th>Próbka</th>
<th>Skład kapieli barwiarskiej</th>
<th>Sorbent</th>
<th>ChZT (mgO₂/dm³)</th>
<th>% usuwania ChZT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1:10</td>
<td>1:20</td>
</tr>
<tr>
<td>Próbka 1</td>
<td>Mordant Black 17</td>
<td>IB</td>
<td>1130</td>
<td>1145</td>
</tr>
<tr>
<td></td>
<td>Mordant Black 11</td>
<td>IB 250°C</td>
<td>956</td>
<td>963</td>
</tr>
<tr>
<td></td>
<td>Dwuchromian sodu</td>
<td>IA</td>
<td>1211</td>
<td>1230</td>
</tr>
<tr>
<td></td>
<td>IA 250°C</td>
<td>IB 250°C</td>
<td>1150</td>
<td>1173</td>
</tr>
<tr>
<td>Próbka 2</td>
<td>Acid Blue 62</td>
<td>IB</td>
<td>120,3</td>
<td>165,4</td>
</tr>
<tr>
<td></td>
<td>IB 250°C</td>
<td>IB 250°C</td>
<td>135,3</td>
<td>140,6</td>
</tr>
<tr>
<td></td>
<td>IA</td>
<td>IA</td>
<td>125,0</td>
<td>167,4</td>
</tr>
<tr>
<td></td>
<td>IA 250°C</td>
<td>IA 250°C</td>
<td>180,4</td>
<td>205,3</td>
</tr>
<tr>
<td>Próbka 3</td>
<td>Acid Green 25</td>
<td>IB</td>
<td>62,72</td>
<td>83,80</td>
</tr>
<tr>
<td></td>
<td>Acid Blue 62</td>
<td>IB 250°C</td>
<td>80,68</td>
<td>88,21</td>
</tr>
<tr>
<td></td>
<td>Acid Brown 355</td>
<td>IA</td>
<td>21,84</td>
<td>36,2</td>
</tr>
<tr>
<td></td>
<td>Acid Yellow 194</td>
<td>IA 250°C</td>
<td>40,64</td>
<td>60,4</td>
</tr>
</tbody>
</table>

Badania nad możliwością usuwania jonów Cr(VI) występujących w roztworze w postaci anionów w ścieku 1 pokazały, że jony te ulegają sorpcji na ziarnach ilu (Tab. 8.5) na poziomie 35–52%. Mimo stosunkowo wysokiego stopnia usuwania Cr(VI), ich stężenie w roztworze po sorpcji (Tab. 8.4) znacznie przekraczało najwyższe dopuszczalne wartości zarówno dla ścieków wprowadzanych do wód i do ziem wyznaczone na 0,1 mg/dm³ [86], jak również dla ścieków przemysłowych odprowadzanych do urządzeń kanalizacyjnych wyznaczone na 0,2 mg/dm³ [87].

Spośród znanych sorbentów jedynie amorficzne tlenki żelaza mają zdolność do wiązania anionów, w tym jonów Cr(VI). Ich zawartość w badanych ilach była niska i wynosiła 634,5 mg/kg (IB) i 1014 mg/kg (IA). Stwierdzono
zależność pojemności sorpcyjnej ilów w stosunku do Cr(VI) od stężenia zawiesiny ilów w roztworze. Pojemność sorpcyjna zmieniła się od 899 mg/kg do 9220 mg/kg.

Badane iliny wykazują natomiast wysoką zdolność wiązania jonów Cr(III) z roztworów o pH 4,0 na poziomie odpowiednio 37000 mg/kg i 29000 mg/kg, przy stosunku faza stała: roztwór wynoszącym 1:10 [57].

Tabela 8.4. Stężenie jonów Cr(VI) w ściekach (próbka 1) po sorpcji oraz ilość zasorbowanych jonów Cr(VI) (mg/kg)

<table>
<thead>
<tr>
<th>Próbka 1</th>
<th>Cr (mg/dm³) [mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stosunek faza stała: faza ciekła</td>
<td>1:10</td>
</tr>
<tr>
<td>IA</td>
<td>92,20 [908,0]</td>
</tr>
<tr>
<td>IA 250°C</td>
<td>93,10 [899,0]</td>
</tr>
</tbody>
</table>

Tabela 8.5. Stopień usunięcia chromu ze ścieków metodą sorpcji na ilach (próbka 1)

<table>
<thead>
<tr>
<th>Próbka 1</th>
<th>1:10</th>
<th>1:20</th>
<th>1:50</th>
<th>1:75</th>
<th>1:100</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB</td>
<td>51,07</td>
<td>52,16</td>
<td>46,08</td>
<td>51,58</td>
<td>50,33</td>
</tr>
<tr>
<td>IB 250°C</td>
<td>51,28</td>
<td>50,00</td>
<td>45,25</td>
<td>42,56</td>
<td>35,63</td>
</tr>
<tr>
<td>IA</td>
<td>49,62</td>
<td>50,11</td>
<td>37,22</td>
<td>35,34</td>
<td>42,22</td>
</tr>
<tr>
<td>IA 250°C</td>
<td>49,13</td>
<td>48,50</td>
<td>37,80</td>
<td>40,87</td>
<td>41,19</td>
</tr>
</tbody>
</table>
9. Wnioski

- Badane iły charakteryzowały się wysoką powierzchnią właściwą oraz pojemnością wymiany kationów, zależną od składu mineralnego.
- Przeprowadzone badania sorpcji wybranych barwników na iłach wykazały, że o sorpcji decyduje przede wszystkim budowa cząsteczki barwników, w tym zdolność do tworzenia anionów lub kationów i zawartość grup funkcyjnych donorowych (-OH, =NH, -NH2) oraz akceptorowych (-Cl, -SO3Na, -N=N-, NO2), a także właściwości sorbentów, tj. powierzchnia właściwa zewnętrzną i porowatość oraz powierzchniowe grupy funkcyjne (silanolowe i aluminolowe).
- Na podstawie przeprowadzonych badań stwierdzono, iż barwniki wiązane były przez iły przede wszystkim na powierzchniach ziaren mineralów budujących iły w wyniku oddziaływania elektrostatycznych pomiędzy ich ujemnie naładowaną powierzchnią a dodatnim jonem barwnika (barwniki kationowe), bądź w wyniku utworzenia wiązań wodorowych między grupami silanolowymi minerałów ilastych a grupami =NH, -NH2, -OH barwników (barwniki anionowe).
- W wyniku aktywacji termicznej w temperaturze 250°C i aktywacji kwasowej iłów nastąpił statystycznie istotny wzrost ich pojemności sorpcyjnej w stosunku do badanych barwników, w wyniku wzrostu powierzchni właściwej iłów.
- Sorpcję wszystkich barwników na ziarnach iłów można opisać przy pomocy równania izotermy Freundlicha, a wartości oszacowanych z równania współczynników 1/n wskazują na sorpcję fizyczną (1/n < 1) barwników anionowych i chemisorpcję (1/n > 1) barwników o charakterze kationowym.
- Sorpcja barwników na ziarnach iłu „Belchatów” zachodziła zgodnie z reakcją pseudo-drugiego-rzędu, a modyfikacja termiczna spowodowała wzrost współczynnika szybkości reakcji.
- Stwierdzono wysoką skuteczność usuwania barwników z próbek ścieków rzecznych wytwarzanych w zakładzie włókienniczym, zależną od stosunku faza stała-roztwór.
- Wysoka pojemność sorpcyjna iłów naturalnych towarzyszących pokładom złoża węgli brunatnych w stosunku do barwników, proste i efektywne metody
ich modyfikacji oraz niska cena powodują, że mogą być onebrane pod uwagę jako skuteczne sorbenty w usuwaniu barwników z wód i ścieków przemysłu farbiarskiego i włókienniczego.

Streszczenie

USUWANIE BARWNIKÓW Z WÓD I ŚCIEKÓW METODĄ SORPCJI NA NEOGEŃSKICH IŁACH SMEKTYTOWYCH

Jakość wód podziemnych i powierzchniowych jest przedmiotem prac legislacyjnych UE głównie ze względu na ich rolę jako źródło wody do picia o dobrym jakości.

Poważnym zagrożeniem dla jakości wód są odprowadzenia bezpośrednio do zbiorników i cieków wodnych ścieków przemysłowych i komunalnych. Wiele warsztatów i małych zakładów przemysłowych nie ma własnych oczyszczalni ścieków i odprowadza ścieki bezpośrednio do kanalizacji miejskiej mimo obowiązującej Ustawy o zbiorowym zaopatrzeniu w wodę i zbiorowym odprowadzaniu ścieków.

Wśród zanieczyszczeń organicznych środowiska wodnego ważną grupę stanowią barwniki i pigmenty. Są one emitowane do ścieków z różnych gałęzi przemysłowych, głównie z przemysłu farbiarskiego, włókienniczego, kosmetycznego i papierniczego.

Barwniki ze względu na złożoną budowę cząsteczki i możliwość wielu podstawień są odporne na rozkład w wyniku stosowania fizycznych, chemicznych lub biologicznych metod ich degradacji. Ponadto w wyniku ich rozkładu mogą powstawać niewielkie ilości produktów toksycznych lub kancerogennych.

Jedną ze skutecznych metod usuwania barwników z wód i ścieków, zarówno w zakresie niskich, jak i wysokich stężeń, jest ich adsorpcja na porowatych sorbentach syntetycznych (np. węglach aktywnych, żywicach jonowymiennych). Jednak wysokie koszty wytwarzania i problemy z regeneracją zużytego węgla wymuszają poszukiwanie efektywnych i ekonomicznych sorbentów, zarówno
pochodzenia mineralnego, jak i organicznego, charakteryzujących się wysoką skutecznością wiązania barwników ze ściekami.

W związku z tym podjęto się badań nad możliwością zastosowania wybranych ilów towarzyszących pokładom złoże węgli brunatnych KWB „Belchatów” i „Adamów” do oczyszczania wód i ścieków zawierających barwniki. Do badań laboratoryjnych wybrano 14 barwników z grupy barwników reaktywnych, bezpośrednich i kwasowych o charakterze anionowym i kationowym, najczęściej stosowanych do barwienia tkanin.

Na podstawie przeprowadzonych badań pojemności sorpcyjnej dwóch neogenicznych ilów semiktylowych towarzyszących pokładom złoże węgli brunatnych stwierdzono, że ilość wiązanych barwników zależała zarówno od rodzaju barwnika, jego budowy chemicznej, ilości i rodzaju grup funkcyjnych, jak i właściwości fizykochemicznych ilów. Stwierdzono najwyższą zdolność ilu „Belchatów” do wiązania wszystkich badanych barwników. Ze względu na dobre właściwości buforowe ilów sorpcja wszystkich badanych barwników przebiegała przy pH wyższym niż punkt izoelektryczny ilów, co oznacza, że ładunek powierzchni ziaren mineralów ilastych i kwarcu o rozmiarach kolooidalnych był ujemny z powodu obecności zdysocjowanych powierzchni wybranych grup silanoloowych -SiO- oraz grup aluminolowych -Al2O- zlokalizowanych na krawędziach i narożach ziarn mineralów ilastych.

Najwyższą pojemność sorpcyjną badanych ilów odnotowano w stosunku do barwników o charakterze kationowym (DY-142, AG-16). Były one wiązane głównie poprzez oddziaływania elektrostatyczne między kationem barwnika a powierzchnią ziarn mineralów budujących ily. Ponadto zdolność niektórych barwników o charakterze anionowym (DR-81, AB-9) do polimeryzacji zwiększała skuteczność ich usuwania, gdyż wiązane są one w postaci dimerów lub wyższej spolimeryzowanych cząsteczek. Pozostałe barwniki anionowe były wiązane w mniejszych ilościach poprzez wiązania wodorowe powstałe między grupami =NH, -NH2, -OH barwników pełniących w wiązaniu rolę grup donorniczych a grupami silanolowymi i aluminolowymi mineralów ilastych, pełniących rolę akceptorów protonów. Przeprowadzone badania wskazują na sorpcję powierzchniową, co oznacza, że zwiększenie porowatości, powierzchni właściwej i ilości centrów sorpcyjnych może zwiększyć pojemność sorpcyjną badanych ilów w stosunku do barwników anionowych. Potwierdziły to badania przeprowadzone na próbkach ilów modyfikowanych.

Sorpcję wybranych badanych barwników z dużym prawdopodobieństwem można opisać za pomocą równania Freundlicha. Oszacowane z równania wartości parametru 1/n w granicach 0–1 wskazują na adsorpcję fizyczną barwników anionowych, a wartości 1/n > 1 – na chemisorpcję i tworzenie wielu warstw barwników kationowych na powierzchni ziaren mineralów. Stwierdzono także, że równanie Freundlicha opisuje sorpcję zarówno typu L, jak i S i H (wg Giles’a). Natomiast równanie Langmuira opisuje sorpcję typu L, a w niektórych przypadkach także typu S i nie opisuje sorpcji typu H.
Sorpca wybranych barwników przez iły naturalne modyfikowane termicznie i chemicznie przebiegała według równania pseudo-drugiego rzędu. W wyniku modyfikacji ilów nastąpiła zmiana stałych szybkości reakcji \(k_2 \) oraz ilości barwników zaadsorbowanych w warunkach równowagowych \(q_e \). Stwierdzono także istotną rolę dyfuzji wewnętrznej w procesie sorpcji.

Badania aplikacyjne zastosowania ilów jako sorbentów w oczyszczaniu ścieków wytwarzanych w zakładzie włókienniczym wykazały wysoką ich skuteczność w usuwaniu barwników a także jonów Cr(VI) zależną od stosunku faza stała:roztwór.

Wysoka skuteczność usuwania badanych barwników przez iły towarzyszące pokładom złóż węgli brunatnych i niska ich cena powodują, że mogą być onebrane pod uwagę jako efektywne sorbenty w usuwaniu barwników ze ścieków przemysłu farbiarskiego i włókienniczego.
Summary

SORPTIVE REMOVAL OF DYES FROM WATER AND WASTEWATER USING NEOGENE SMECTITE CLAYS

The European Union legislation concern about the resources of ground and surface waters is motivated by their significance as a source of high quality drinking water.

Since 2000, in the EU, the Water Framework Directive has been in force providing legal instruments to protect waters and aiming at achieving their good quality no later than 2015. Both, the maintenance and improvement of water quality within the assumed period require identification of the threats, assessment of their environmental effects and, where necessary, application of proper remediation measures. In general, the task is realized by imposing limits on discharges of pollutants into waters and water-dependent ecosystems.

Released directly into watercourses and water basins, industrial and municipal waste waters seriously damage the water environment. Many workshops and small industrial plants have no waste treatment stations and, violating the law they release waste waters into sewage systems without any pre-treatment.

An important group of organic pollutants contaminating the water environment is formed by the dyes and pigments coming from various industries, mainly from the dyeing, textile, cosmetic and paper ones. Because of their complex structure and many possible substitutions, the dyes resist physical, chemical or biological degradation. Moreover, their decomposition yields some amounts of toxic and carcinogenic substances.

The adsorption onto porous synthetic materials (activated carbon, ion-exchange resins) is one of the more effective methods for removal of dyes from waters and waste waters, equally at low and high dye concentrations. However, high costs of production and troublesome regeneration of the spent sorbents activate the search for effective and economical, mineral or organic, natural sorbents for dyes.

Two Neogene smectite clays, co-occurring with lignite at “Belchatów” and “Adamów” Lignite Mines, were examined for their capability of reducing the dye content of water and waste water. The dyes used in the experiment were 14 reactive, direct and acid, anionic and cationic dyes, most common in textile dyeing.
The sorption capacity of the clays depended on the dye properties, the dye chemical composition, number and kind of functional groups, and of the physicochemical properties of the clays themselves. The “Belchatów” clay had higher sorption capacity for all the examined dyes. Because of good buffering properties of the clays, all the dyes were sorbed at pH higher than the clay point of zero charge, i.e. the colloidal size particles of the clay minerals and quartz had negative charge due to dissociated surface silanol (-SiOH) groups and aluminol (-Al₂OH) groups located on the edges of the clay particles.

The greatest sorption capacity both clays showed for cationic dyes (DY-142, AG-16), bound mainly through electrostatic attraction between the dye cations and the surface of the particles of clay minerals. Some anionic dyes (DR-81, AB-9) enhanced the clay capacity for their sorption by polymerizing. The remaining anionic dyes were bound in smaller amounts, through hydrogen bounds between =NH, -NH₂, -OH groups (proton donors) in dyes and silanol and aluminol groups (proton acceptors) in clay minerals.

The sorption was classified as surface sorption – the increase of the porosity, specific surface area and the number sorption centers may enhance the sorption capacity of the clays for anionic dyes. It was confirmed by investigating the thermally and chemically modified clays.

The Freundlich equation described the sorption most adequately. The values of Fraundlich’s parameter 1/n between 0 and 1 indicated the physical sorption of the anionic dyes, 1/n greater than 1 – chemisorption and creation of many layers of the cationic dyes on the mineral particles. The Freundlich equation was ascertained to describe Giles’ type sorption L, S and H. The Langmuir equation describes the L-type sorption, in some cases the S-type sorption, and it does not describe the H-type sorption.

Thermally and chemically modified, the clays sorbed the dyes according to the pseudo-second order equation. The clay modifications changed the reaction rate constants k₂ and the amount qₑ of dyes adsorbed in the equilibrium conditions. The intra-particle diffusion played also an important role in the sorption.

The efficiency of the clays in removal of the dyes from the samples of waste water from a textile factory was high and depended on the proportion solid phase : solution. This high efficiency and low costs of the clays co-occurring with lignite deposits allow to consider their application as sorbents for dye removal from waste water released by the dyeing and textile industries.
10. Literatura

70. „*Ochrona Środowiska*”, Warszawa 2012.

81. Ramowa Dyrektywa Wodna 2000/60/WE Parlamentu Europejskiego I Rady z dnia 23 października 2000r. ustanawiająca ramy wspólnotowego działania w dziedzinie polityki wodnej.
86. Rozporządzenie Ministra Środowiska z dnia 28 stycznia 2009 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi (Dz.U.2009.27.169 z dnia 19 lutego 2009 r.).
87. Rozporządzenie Ministra Budownictwa z dnia 14 lipca 2006 r. w sprawie sposobu realizacji obowiązków dostawców ścieków przemysłowych oraz warunków wprowadzania ścieków do urządzeń kanalizacyjnych (Dz.U.2006.136.964 z dnia 28 lipca 2006 r.).
104. Ustawa z dnia 7 czerwca 2001 r. o zbiorowym zaopatrzeniu w wodę i zbiorowym odprowadzaniu ścieków wraz zpóźniejszymi zmianami (Dz.U. 2001.72.747 z dnia 13 lipca 2001 r.).

